ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
Collection
Language
  • English  (5)
Years
  • 1
    Publication Date: 2020-12-14
    Description: Free traveling Rossby wave normal modes (RNMs) are often investigated through large‐scale space‐time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground‐based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM‐like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m =1, excepting one 16‐day oscillation associated with m =2. We discuss the m =1 oscillations as transient RNMs and the m =2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5‐day wave, namely, an oscillation at 5–7 days with m =1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi‐10‐ and 6‐day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW‐SW2 nonlinear interactions. We further present 7‐year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley‐Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-23
    Description: Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (∼ 54∘ N) and northern Norway (∼ 69∘ N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Journal of Rock Mechanics and Geotechnical Engineering
    Publication Date: 2022-05-20
    Description: Water reinjection into the formation is an indispensable operation in many energy engineering practices. This operation involves a complex hydromechanical (HM) coupling process and sometimes even causes unpredictable disasters, such as induced seismicity. It is acknowledged that the relative magnitude and direction of the principal stresses significantly influence the HM behaviors of rocks during injection. However, due to the limitations of current testing techniques, it is still difficult to comprehensively conduct laboratory injection tests under various stress conditions, such as in triaxial extension stress states. To this end, a numerical study of HM changes in rocks during injection under different stress states is conducted. In this model, the saturated rock is first loaded to the target stress state under drainage conditions, and then the stress state is maintained and water is injected from the top to simulate the formation injection operation. Particular attention is given to the difference in HM changes under triaxial compression and extension stresses. This includes the differences in the pore pressure propagation, mean effective stress, volumetric strain, and stress-induced permeability. The numerical results demonstrate that the differential stress will significantly affect the HM behaviors of rocks, but the degree of influence is different under the two triaxial stress states. The HM changes caused by the triaxial compression stress states are generally greater than those of extension, but the differences decrease with increasing differential stress, indicating that the increase in the differential stress will weaken the impact of the stress state on the HM response. In addition, the shear failure p otential of fracture planes with various inclination angles is analyzed and summarized under different stress states. It is recommended that engineers could design suitable injection schemes according to different tectonic stress fields versus fault occurrence to reduce the risk of injection-induced seismicity.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-26
    Description: To expand the newly developed ARM glasses as reference materials for in situ microanalysis of isotope ratios and iron oxidation state by a variety of techniques such as SIMS, LA-MC-ICP-MS and EPMA, we report Li-B-Si-O-Mg-Sr-Nd-Hf-Pb isotope data and Fe2+/ΣFe ratios for these glasses. The data were mainly obtained by TIMS, MC-ICP-MS, IR-MS and wet-chemistry colorimetric techniques. The quality of these data was cross-checked by comparing different techniques or by comparing the results from different laboratories using the same technique. All three glasses appear to be homogeneous with respect to the investigated isotope ratios (except for B in ARM-3) and Fe2+/ΣFe ratios at the scale of sampling volume and level of the analytical precision of each technique. The homogeneity of Li-B-O-Nd-Pb isotope ratios at the microscale (30–120 μm) was estimated using LA-MC-ICP-MS and SIMS techniques. We also present new EPMA major element data obtained using three different instruments for the glasses. The determination of reference values for the major elements and their uncertainties at the 95% confidence level closely followed ISO guidelines and the Certification Protocol of the International Association of Geoanalysts. The ARM glasses may be particularly useful as reference materials for in situ isotope ratio analysis.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...