ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Dansgaard‐Oeschger (D‐O) climate variability during the last glaciation was first evidenced in ice cores and marine sediments, and is also recorded in various terrestrial paleoclimate archives in Europe. The relative synchronicity across Greenland, the North Atlantic and Europe implies a tight and fast coupling between those regions, most probably effectuated by an atmospheric transmission mechanism. In this study, we investigated the atmospheric changes during Greenland interstadial (GI) and stadial (GS) phases based on regional climate model simulations using two specific periods, GI‐10 and GS‐9 both around 40 ka, as boundary conditions. Our simulations accurately capture the changes in temperature and precipitation as reconstructed by the available proxy data. Moreover, the simulations depict an intensified and southward shifted eddy‐driven jet during the stadial period. Ultimately, this affects the near‐surface circulation toward more southwesterly and cyclonic flow in western Europe during the stadial period, explaining much of the seasonal climate variability recorded by the proxy data, including oxygen isotopes, at the considered proxy sites.〈/p〉
    Description: Plain Language Summary: The climate during the last ice age varied between colder and warmer periods on timescales ranging from hundreds to thousands of years. This variability was first detected in Greenland ice cores and marine sediment cores of the North Atlantic, as well as in continental geological records in Europe. The variation between the colder and warmer periods occur mostly simultaneously in Greenland and in Europe, which is why the atmosphere is assumed to have an important role in transferring the climate signals. We simulated two different periods of the last ice age, one colder and one warmer around 40,000 years ago, using a regional climate model. The aim was to study how the climate and atmospheric circulation changed during these two periods. We find the eddy‐driven jet over the North Atlantic intensified and shifted southward during the colder period. The jet influences the near‐surface atmospheric circulation and leads to more southwesterly and cyclonic flow in western Europe. Oxygen isotope variations observed in western European paleoclimate records may be partly explained by different, more southern moisture sources on top of changes in seasonal temperatures.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Simulated temperatures agree with proxy data; precipitation is biased but GI‐10 versus GS‐9 differences are well captured〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The stadial winter jet stream is intensified and shifted southward, consistent with dominant southwesterly/cyclonic flow in western Europe〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Oxygen isotope signal changes at western European proxy sites may be explained not only by temperature but also by varying moisture sources〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: NRDIO
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: https://doi.org/10.5065/1dfh-6p97
    Keywords: ddc:551.6 ; Dansgaard‐Oeschger cycle ; regional atmospheric dynamics ; regional climate modeling ; continental paleoclimate proxy ; Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-09
    Description: We report the concurrent observations of F-region plasma changes and field-aligned currents (FACs) above isolated proton auroras (IPAs) associated with electromagnetic ion cyclotron Pc1 waves. Key events on March 19, 2020 and September 12, 2018 show that ground magnetometers and all-sky imagers detected concurrent Pc1 wave and IPA, during which NOAA POES observed precipitating energetic protons. In the ionospheric F-layer above the IPA zone, the Swarm satellites observed transverse Pc1 waves, which span wider latitudes than IPA. Around IPA, Swarm also detected the bipolar FAC and localized plasma density enhancement, which is occasionally surrounded by wide/shallow depletion. This indicates that wave-induced proton precipitation contributes to the energy transfer from the magnetosphere to the ionosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-16
    Description: One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-11
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-19
    Description: We report the first observation of plasma density oscillations coherent with magnetic Pc1 waves. Swarm satellites observed compressional Pc1 wave activity in the 0.5–3 Hz band, which was coherent with in situ plasma density oscillations. Around the Pc1 event location, the Antarctic Neumayer Station III (L ~ 4.2) recorded similar Pc1 events in the horizontal component while NOAA‐15 observed isolated proton precipitations at energies above 30 keV. All these observations support that the compressional Pc1 waves at Swarm are oscillations converted from electromagnetic ion cyclotron (EMIC) waves coming from the magnetosphere. The magnetic field and plasma density oscillate in‐phase. We compared the amplitudes of density and magnetic field oscillations normalized to background values and found that the density power is much larger than the magnetic field power. This difference cannot be explained by a simple magnetohydrodynamic (MHD) model, although steep horizontal/vertical gradients of background ionospheric density can partly reconcile the discrepancy.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-25
    Description: Transverse Pc1 waves propagating from magnetospheric source regions undergo mode conversion to the compressional mode in the ionosphere due to the induced Hall current. Mode converted Pc1 waves propagate across the magnetic field through the ionospheric waveguide. This process is called Pc1 wave ducting (PWD). PWDs have been observed by magnetometers on both ground and low Earth orbit satellites over a wide latitudinal and longitudinal range. In this work, we present the statistical analysis results of PWD exploiting Swarm satellites from 2015 to 2019. Spatial distributions show that the PWDs are mainly observed over the South Atlantic Anomaly longitudes, possibly due to the high Hall conductivity and F-region density, and at subauroral/auroral latitudes (  50 70 MLAT). The occurrence rate of PWD increases with increasing AE and | SYM-H | indices. Seasonal dependence shows that PWD exhibits a high occurrence rate during equinox and local summer while local winter hosts only a low occurrence. The asymmetry between summer and winter can be explained by the ionospheric plasma density. The high occurrence rate in equinox may result from intense geomagnetic activity during the equinox, probably due to the Russell-McPherron effect. From our statistical analysis, we conclude that the occurrence of PWD is controlled by both ionospheric plasma conditions and geomagnetic activity, and that the mode conversion and PWD occur more efficiently as plasma density increases.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-15
    Description: We report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground‐based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density (PSD) profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy‐dependent relativistic electron dropout over a limited L‐shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave‐induced relativistic electron loss in the radiation belt.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-09
    Description: Planted forests are critical to climate change mitigation and constitute a major supplier of timber/non-timber products and other ecosystem services. Globally, approximately 36% of planted forest area is located in East Asia. However, reliable records of the geographic distribution and tree species composition of these planted forests remain very limited. Here, based on extensive in situ and remote sensing data, as well as an ensemble modeling approach, we present the first spatial database of planted forests for East Asia, which consists of maps of the geographic distribution of planted forests and associated dominant tree genera. Of the predicted planted forest areas in East Asia (948,863 km2), China contributed 87%, most of which is located in the lowland tropical/subtropical regions, and Sichuan Basin. With 95% accuracy and an F1 score of 0.77, our spatially-continuous maps of planted forests enable accurate quantification of the role of planted forests in climate change mitigation. Our findings inform effective decision-making in forest conservation, management, and global restoration projects.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-06-01
    Description: This study addresses whether a series of strong substorm-associated MeV electron injections can be a crucial contributor to outer-radiation belt enhancement events. We examine an event that occurred on July 10, 2019, where ~2 MeV electron fluxes increased by ~3 orders of magnitude in only ~7.5-hrs under 4 repetitive, strong relativistic electron injections. For this examination, it is essential to precisely separate purely temporal flux changes from spatial variations observed as Van Allen Probes move along their orbits (i.e., orbital effect). Employing a new “hourly snapshot” analysis approach, we uncover unprecedented details of electron flux dynamics that indicates that the overall outer belt enhancement for this event was not continuous but composed of 4 large discrete flux increases primarily driven by the strong injections. These injections appear as sharp flux increases at all energies when a spacecraft is located in the injection region, and the inner-most L of the flux increase is located farther out with increasing energy as expected for injections. Earthward of the injection region, by comparing hourly snapshots for different times, we infer injections and infer temporally-stable fluxes between injections, despite strong and continuous chorus emission. The fast and intermittent, large flux growths imply cumulative outer belt enhancement via repetitive inward radial transport associated with injection-induced electric fields.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-30
    Description: This study covered an area on the western side of the Denman Glacier and the Obruchev Hills, where the predominantly granulite-facies metamorphic rocks exposed of rather different composition. They are intruded by a wide variety of plutonic rocks, including a major batholith of syenitic to granitic composition at David Island. A variety of intrusive rocks (gabbrodiorite, granite-aplite and Bt-granite) of 500 m.a. batholith, exposed at Cape Delay Point, are characterized by high values of magnetic susceptibility (13÷22)×10-3 SI units. However, biotite gabbro has low values. The granosyenites and granodiorites of Hippo Island mainly have high values of magnetic susceptibility (40÷50)×10-3 SI units. The Batholith dyke complex in the area of Cape Kennedy is mainly composed by non-magnetic rocks, with the exception of Bt leucogranite 64×10-3 SI units. Also, the aplite of Gilles Island has high values of magnetic susceptibility (55÷70)×10-3 SI units. The Archean Cape Charcot metamorphic rocks include weakly magnetic paragneisses (4÷5)×10-3 SI units and non-magnetic orthogneisses ~0.3×10-3 SI units. Metamorphic rocks of the Davis Peninsula basement are characterized by values of (0.05÷9)×10-3 SI units and are represented by Amf-Bt orthogneisses and banded gneisses. Thus, the main sources of anomalies in the studied area are intrusive rocks of batholith, while Archean crystalline basement only forms a common magnetic background. The magnetic rocks of the Obruchev Hills and Cape Jones are represented by (±Px)-Amf-Bt orthogneisses (30÷90)×10-3 SI units, which form the main anomaly magnetic field pattern. Magnetic susceptibility values for Sill-Bt and Grt-Bt paragneisses do not exceed 0.4×10-3 SI units.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...