ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1)
Collection
Language
  • English  (1)
Years
  • 1
    Publication Date: 2020-02-12
    Description: High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5–2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...