ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4)
Collection
Keywords
Language
Years
  • 1
    Call number: AWI A4-06-0007
    Type of Medium: Monograph available for loan
    Pages: ca. 500 S.
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI A6-21-94541
    Description / Table of Contents: Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a ...
    Type of Medium: Dissertations
    Pages: viii, 119 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2020 , Contents1 Introduction 1.1 Motivation: Seasonal prediction 1.2 The new atmosphere model ICON 1.3 Research questions 2 Theoretical background 2.1 Fundamentals of atmospheric circulation 2.1.1 Primitive equations 2.1.2 The global energy budget 2.1.3 Baroclinic instability 2.1.4 Vertical structure of the atmosphere 2.2 Stratospheric dynamics 2.2.1 Circulation patterns 2.2.2 Atmospheric waves 2.2.3 Sudden stratospheric warmings 2.2.4 Quasi-biennial oscillation 2.3 Atmospheric Teleconnections 2.3.1 NAM, NAO and PNA 2.3.2 El Niño-Southern Oscillation 2.3.3 Arctic-midlatitude linkages 3 Atmospheric model and methods of analysis 3.1 Atmospheric model ICON-NWP 3.1.1 Model description 3.1.2 Experimental setup 3.2 Reanalysis data ERA-Interim 3.3 Methods of analysis 3.3.1 NAM index for stratosphere–troposphere coupling 3.3.2 Stratospheric warmings 3.3.3 ENSO index and composites 3.3.4 Bias and error estimation 3.3.5 Statistical significance 4 Results 4.1 Evaluation of seasonal experiments with ICON-NWP 4.1.1 Tropospheric circulation 4.1.2 Stratospheric circulation 4.2 Effect of gravity wave drag parameterisations 4.2.1 Stratospheric effects 4.2.2 Effects on stratosphere-troposphere coupling 4.2.3 Tropospheric effects 4.3 Low latitudinal influence on the stratospheric polar vortex 4.3.1 Quasi-biennial oscillation 4.3.2 El Niño-Southern Oscillation 4.4 Arctic-midlatitude linkages 4.4.1 Tropospheric processes 4.4.2 Stratospheric pathway 4.4.3 Sea ice sensitivity experiment 5 Discussion and outlook Bibliography Appendix
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI A4-23-95497
    Description / Table of Contents: Extreme weather and climate events are one of the greatest dangers for present-day society. Therefore, it is important to provide reliable statements on what changes in extreme events can be expected along with future global climate change. However, the projected overall response to future climate change is generally a result of a complex interplay between individual physical mechanisms originated within the different climate subsystems. Hence, a profound understanding of these individual contributions is required in order to provide meaningful assessments of future changes in extreme events. One aspect of climate change is the recently observed phenomenon of Arctic Amplification and the related dramatic Arctic sea ice decline, which is expected to continue over the next decades. The question to what extent Arctic sea ice loss is able to affect atmospheric dynamics and extreme events over mid-latitudes has received a lot of attention over recent years and still remains a highly debated topic. In this respect, the objective of ...
    Type of Medium: Dissertations
    Pages: xi, 126 Seiten , Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , CONTENTS 1 SCIENTIFIC BACKGROUND AND RESEARCH QUESTIONS 1.1 Extreme events and attribution 1.2 Arctic climate change and mid-latitude linkages 1.3 Research questions 2 FOUNDATIONS 2.1 Atmospheric basics 2.1.1 Governing equations 2.1.2 Zonal wind and temperature profiles 2.1.3 Atmospheric waves and instabilities 2.1.4 Large-scale variability patterns and blocking 2.2 Atmospheric circulation regimes 2.2.1 Dynamical concepts 2.2.2 Regime computation 2.2.3 Regime number 2.3 Arctic climate change 2.3.1 Recent trends in Arctic sea ice and temperatures 2.3.2 Surface fluxes and energy balance in Arctic regions 2.3.3 Polar amplification mechanisms 2.3.4 Arctic-mid-latitude linkages 2.4 Weather and climate extremes 2.4.1 Recent trends 2.4.2 Dynamical driver of temperature extremes 3 DATA AND METHODS 3.1 ERA5 reanalysis 3.2 Model experiments 3.2.1 The atmospheric general circulation model ECHAM6 3.2.2 Polar Amplification Intercomparison Project data 3.3 Methods 3.3.1 Statistical significance 3.3.2 Extreme definition 4 RESULTS AND DISCUSSION 4.1 Mean circulation in ERA5 and ECHAM6 experiments 4.1.1 Climatological mean states in ERA5 and the reference simulation 4.1.2 Climatological responses in ECHAM6 sensitivity experiments 4.2 Circulation regimes and sea ice-induced frequency changes 4.2.1 Regime structures in ERA5 and ECHAM6 experiments 4.2.2 Regime frequency changes in ERA 4.2.3 Regime frequency changes in ECHAM6 experiments 4.3 Changes in Northern Hemispheric temperature extremes induced by sea ice loss 4.3.1 Extreme occurrence frequency changes 4.3.2 Temperature return level changes 4.4 Links between circulation regimes and extremes over Europe 4.4.1 Winter temperature extremes 4.4.2 Summer heat extremes 4.4.3 Winter wind extremes 4.5 Decomposition of sea ice-induced frequency changes in European winter extremes 4.5.1 Midwinter cold extremes along a SCAN storyline 4.5.2 January warm extremes along a ATl- storyline 4.5.3 February warm extremes along a NAO+ storyline 4.5.4 Comparison with futSST 4.5.5 January wind extremes along a ATL- storyline 4.6 Circulation Analogue-based approach for summer season 4.6.1 ERA5 event definitions 4.6.2 Reference flows and analogues in ERA5 4.6.3 Circulation analogues in ECHAM6 experiments 4.6.4 Decomposition of sea ice-induced changes in European heat extremes 5 CONCLUSION 5.1 Summary 5.2 Final discussion and outlook Appendix A METHODS A.1 Principal Component Analysis A.2 𝑘-Means clustering A.2.1 Algorithm A.2.2 Computation of circulation regimes A.3 Taylor diagram A.4 Regression model for describing ERA5 regime frequency changes A.4.1 General setup A.4.2 Multinomial Logistic Regression A.4.3 Linear predictor A.5 Definition and calculation of return levels A.5.1 Block maxima approach and Generalized Extreme Value distribution A.5.2 Return level estimation A.6 Framework for conditional extreme event attribution Appendix B ADDITIONAL FIGURES B.1 Circulation regimes and sea ice-induced frequency changes B.2 Changes in Northern Hemispheric temperature extremes induced by sea ice loss B.3 Links between circulation regimes and extremes over Europe B.3.1 Conditioned vs. unconditioned ERA5 and wind extreme probabilities B.3.2 Wind and synoptic-scale activity anomalies B.4 Decomposition of sea ice-induced frequency changes in European winter extremes B.5 Circulation Analogue-based approach for summer season B.6 Miscellaneous B.6.1 Recent Arctic sea ice trends B.6.2 futSST forcing field B.6.3 Fluxes over sea ice and ocean surfaces in ECHAM6 BIBLIOGRAPHY
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-23
    Description: The modeling of the atmospheric boundary layer over sea ice is still challenging because of the complex interaction between clouds, radiation and turbulence over the often inhomogeneous sea ice cover. There is still much uncertainty concerning sea ice roughness, near‐surface thermal stability and related processes, and their accurate parameterization. Here, a regional Arctic climate model forced by ERA‐Interim data was used to test the sensitivity of climate simulations to a modified surface flux parameterization for wintertime conditions over the Arctic. The reference parameterization as well as the modified one is based on Monin–Obukhov similarity theory, but different roughness lengths were prescribed and the stability dependence of the transfer coefficients for momentum, heat and moisture differed from each other. The modified parameterization accounts for the most comprehensive observations that are presently available over sea ice in the inner Arctic. Independent of the parameterization used, the model was able to reproduce the two observed dominant winter states with respect to cloud cover and longwave radiation. A stepwise use of the different parameterization assumptions showed that modifications of both surface roughness and stability dependence had a considerable impact on quantities such as air pressure, wind and near‐surface turbulent fluxes. However, the reduction of surface roughness to values agreeing with those observed during the Surface Heat Budget of the Arctic Ocean campaign led to an improvement in the western Arctic, while the modified stability parameterization had only a minor impact. The latter could be traced back to the model's underestimation of the strength of stability over sea ice. Future work should concentrate on possible reasons for this underestimation and on the question of generality of the results for other climate models.
    Description: The modeling of the atmospheric boundary layer over sea ice is challenging. This is, among others, due to the distinct sea ice surface roughness and pressure ridges as shown in the image, and the often stably stratified atmosphere. We quantified the impact of used parameterizations and show that both surface roughness and stability dependence have a considerable impact on near‐surface turbulent fluxes and atmospheric circulation in Arctic climate simulations.
    Description: German Research Foundation (DFG)
    Description: Helmholtz Association (HGF), POLEX http://dx.doi.org/10.13039/100003872
    Description: Russian Science Foundation (RSF) http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...