ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1)
Collection
Language
  • English  (1)
Years
  • 1
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-06
    Description: LEO satellites move faster and can greatly improve the observing geometry, thus are considered as an important supplement to current GNSS. There have been some studies on positioning performance and ionospheric modeling. However, detailed analysis results on troposphere estimation using LeGNSS observations are still relatively limited now. In this contribution, LEO constellation augmented GNSS (LeGNSS) troposphere estimation is investigated, and the impacts of relevant factors are analyzed in detail. When the temporal resolutions of zenith troposphere delay (ZTD) and horizontal gradients are 1 h and 2 h, while standard deviations (STDs) of phase and pseudorange observations at the zenith direction are 0.005 m and 0.5 m, the accuracies of ZTD, north gradient, and east gradient augmented by LEO constellation improve by 15.7%, 29.6%, and 16.4%, respectively, compared with GNSS solution. The results of troposphere estimation under obstructed environment and using low-cost dual frequency receivers also become more robust after adding LEO observations. Most importantly, analysis results during periods with rapid varying troposphere parameters suggest that the contribution of LEO constellation becomes even bigger with increasing temporal resolutions of ZTD and horizontal gradients, indicating that LeGNSS can be used to extract tropospheric parameters with improved accuracies at high temporal resolution. Thus, the capability in rapidly capturing severe weather events can be improved by LeGNSS observations, and the performance can become even better with increasing number of LEO satellites. All these results suggest that LeGNSS might be an important tool in improving the performance of troposphere estimation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...