ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-03
    Description: The novel Aeolus satellite, which carries the first Doppler wind lidar providing profiles of horizontal line‐of‐sight (HLOS) winds, addresses a significant gap in direct wind observations in the global observing system. The gap is particularly critical in the tropical upper troposphere and lower stratosphere (UTLS). This article validates the Aeolus Rayleigh–clear wind product and short‐range forecasts of the European Centre for Medium‐Range Weather Forecasts (ECMWF) with highly accurate winds from the Loon super pressure balloon network at altitudes between 16 and 20 km. Data from 229 individual balloon flights are analysed, applying a collocation criterion of 2 hr and 200 km. The comparison of Aeolus and Loon data shows systematic and random errors of -0.31 and 6.37 m·s〈sup〉-1〈/sup〉, respectively, for the Aeolus Rayleigh–clear winds. The horizontal representativeness error of Aeolus HLOS winds (nearly the zonal wind component) in the UTLS ranges from 0.6–1.1 m·s〈sup〉-1〈/sup〉 depending on the altitude. The comparison of Aeolus and Loon datasets against ECMWF model forecasts suggests that the model systematically underestimates the HLOS winds in the tropical UTLS by about 1 m·s〈sup〉-1〈/sup〉. While Aeolus winds are currently considered as point winds by the ECMWF data assimilation system, the results of the present study demonstrate the need for a more realistic HLOS wind observation operator for assimilating Aeolus winds.
    Keywords: ddc:551.6 ; Aeolus ; data assimilation ; ECMWF forecasts ; HLOS winds ; Loon ; super pressure balloon observations ; systematic and random errors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-25
    Description: An analysis of the life cycle of shallow marine cumulus clouds is presented based on geostationary observations by the Spinning Enhanced Visible and InfraRed Imager aboard Meteosat Second Generation (MSG‐SEVIRI). Trajectories of about 250,000 individual shallow marine cumulus clouds have been derived by applying Particle Image Velocimetry to the Satellite Application Facility on Climate Monitoring CLoud property dAtAset using SEVIRI for a region in the trade wind zone centered around the Canary Islands in August 2015. The temporal evolution of the physical properties of these clouds allows to characterize cloud development and to infer the distribution of cloud life time and cloud extent. In the derived data set, the life time distribution follows a double power law with most clouds existing on a time scale of tens of minutes. The cloud physical properties, available during daytime, are analyzed along the cloud tracks. Relative time series of cloud extent, cloud water path, cloud droplet effective radius at cloud top, cloud optical thickness, and cloud droplet number concentration for clouds in two temporal ranges reveal conditions that can be attributed to long‐lasting clouds. Clouds of a certain horizontal extent and cloud top height as well as cloud droplet radius show longer life times if they are optically more dense, i.e., have a higher droplet number concentration. Furthermore, the investigation of the content of liquid cloud water regarding cloud life time and cloud extent shows that small short‐living clouds significantly contribute to cloud radiative effects.
    Description: Plain Language Summary: A comprehensive analysis of the life cycle of shallow marine cumulus clouds is presented based on measurements of a specialized instrument, called SEVIRI, aboard Meteosat's Second Generation geostationary meteorological satellite. A new method is applied to derive the physic‐property temporal evolution of approximately 250,000 individual clouds in a region around the Canary Islands during August 2015. Several constraints are applied to infer the relationship between cloud life time and various cloud parameters. The study reveals that cloud life time is related to the optical thickness when constrained by horizontal extent, cloud top height, and droplet radius. The analysis further shows that small short‐living clouds significantly contribute to cloud radiative effects.
    Description: Key Points: The life cycle of shallow marine cumulus clouds is inferred using a passive space‐based geostationary instrument. Life cycle is quantified by top temperature/height, cloud extent, cloud water path, optical thickness, and droplet radius/number concentration. Cumulus clouds of a certain horizontal extent, cloud top height as well as droplet radius live longer if they are optically denser.
    Description: DAAD, German Academic Exchange Service
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-27
    Description: Clouds interact with atmospheric radiation and substantially modify the Earth's energy budget. Cloud formation processes occur over a vast range of spatial and temporal scales, which make their thorough numerical representation challenging. Therefore, the impact of parameter choices for simulations of cloud-radiative effects is assessed in the current study. Numerical experiments are carried out using the ICOsahedral Nonhydrostatic (ICON) model with varying grid spacings between 2.5 and 80 km and with different subgrid-scale parameterization approaches. Simulations are performed over the North Atlantic with either one-moment or two-moment microphysics and with convection being parameterized or explicitly resolved by grid-scale dynamics. Simulated cloud-radiative effects are compared to products derived from Meteosat measurements. Furthermore, a sophisticated cloud classification algorithm is applied to understand the differences and dependencies of simulated and observed cloud-radiative effects. The cloud classification algorithm developed for the satellite observations is also applied to the simulation output based on synthetic infrared brightness temperatures, a novel approach that is not impacted by changing insolation and guarantees a consistent and fair comparison. It is found that flux biases originate equally from clear-sky and cloudy parts of the radiation field. Simulated cloud amounts and cloud-radiative effects are dominated by marine, shallow clouds, and their behavior is highly resolution dependent. Bias compensation between shortwave and longwave flux biases, seen in the coarser simulations, is significantly diminished for higher resolutions. Based on the analysis results, it is argued that cloud-microphysical and cloud-radiative properties have to be adjusted to further improve agreement with observed cloud-radiative effects.
    Keywords: 551.5 ; Cloud-Radiative Effects ; TOA Energy Budget ; High-Resolution Simulations ; Meteosat Observations ; Cloud Classification ; Bias Decomposition
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...