ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Many operational weather services use ensembles of forecasts to generate probabilistic predictions. Computational costs generally limit the size of the ensemble to fewer than 100 members, although the large number of degrees of freedom in the forecast model would suggest that a vastly larger ensemble would be required to represent the forecast probability distribution accurately. In this study, we use a computationally efficient idealised model that replicates key properties of the dynamics and statistics of cumulus convection to identify how the sampling uncertainty of statistical quantities converges with ensemble size. Convergence is quantified by computing the width of the 95% confidence interval of the sampling distribution of random variables, using bootstrapping on the ensemble distributions at individual time and grid points. Using ensemble sizes of up to 100,000 members, it was found that for all computed distribution properties, including mean, variance, skew, kurtosis, and several quantiles, the sampling uncertainty scaled as 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:msup〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈mml:mo stretchy="false"〉/〈/mml:mo〉〈mml:mn〉2〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈/mml:math〉 for sufficiently large ensemble size 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉. This behaviour is expected from the Central Limit Theorem, which further predicts that the magnitude of the uncertainty depends on the distribution shape, with a large uncertainty for statistics that depend on rare events. This prediction was also confirmed, with the additional observation that such statistics also required larger ensemble sizes before entering the asymptotic regime. By considering two methods for evaluating asymptotic behaviour in small ensembles, we show that the large‐〈mml:math id="jats-math-3" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉 theory can be applied usefully for some forecast quantities even for the ensemble sizes in operational use today.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉An idealised ensemble that replicates key properties of the dynamics and statistics of cumulus convection is used to identify how sampling uncertainty of statistical quantities converges with ensemble size. A universal asymptotic scaling for this convergence was found, which was dependent on the statistic and the distribution shape, with largest uncertainty for statistics that depend on rare events. This is demonstrated in the figure below for a Gaussian distributed model variable, where the sampling uncertainty (y‐axis) for 5 quantiles (red lines) indicates that after a certain ensemble size, it begins converging asymptotically (grey lines), and the more extreme the quantile, the more members it requires for this to be the case. 〈boxed-text position="anchor" id="qj4410-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4410:qj4410-toc-0001"〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Klaus Tschira Stiftung http://dx.doi.org/10.13039/501100007316
    Keywords: ddc:551.6 ; asymptotic convergence ; distributions ; ensembles ; idealised model ; sampling uncertainty ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉For both the meso‐ and synoptic scales, reduced mathematical models give insight into their dynamical behaviour. For the mesoscale, the weak temperature gradient approximation is one of several approaches, while for the synoptic scale the quasigeostrophic theory is well established. However, the way these two scales interact with each other is usually not included in such reduced models, thereby limiting our current perception of flow‐dependent predictability and upscale error growth. Here, we address the scale interactions explicitly by developing a two‐scale asymptotic model for the meso‐ and synoptic scales with two coupled sets of equations for the meso‐ and synoptic scales respectively. The mesoscale equations follow a weak temperature gradient balance and the synoptic‐scale equations align with quasigeostrophic theory. Importantly, the equation sets are coupled via scale‐interaction terms: eddy correlations of mesoscale variables impact the synoptic potential vorticity tendency and synoptic variables force the mesoscale vorticity (for instance due to tilting of synoptic‐scale wind shear). Furthermore, different diabatic heating rates—representing the effect of precipitation—define different flow characteristics. With weak mesoscale heating relatable to precipitation rates of 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉6〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, the mesoscale dynamics resembles two‐dimensional incompressible vorticity dynamics and the upscale impact of the mesoscale on the synoptic scale is only of a dynamical nature. With a strong mesosocale heating relatable to precipitation rates of 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉60〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, divergent motions and three‐dimensional effects become relevant for the mesoscale dynamics and the upscale impact also includes thermodynamical effects.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We develop a two‐scale asymptotic model for the meso‐ and synoptic scales following a weak temperature gradient balance and quasigeostrophic theory, but with explicit scale interactions and dependent on the mesoscale diabatic heating. With weak mesoscale heating, the mesoscale dynamics resembles 2D incompressible vorticity dynamics and the upscale impact on the synoptic scale is only of a dynamical nature. With strong mesoscale heating, divergent motions and 3D effects become relevant for the mesoscale and the upscale impact also includes thermodynamical effects. 〈boxed-text position="anchor" id="qj4456-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4456:qj4456-toc-0001"〉
    Description: German Research Foundation (DFG)
    Keywords: ddc:551.5 ; asymptotics ; atmospheric dynamics ; mesoscale ; multiscale scale interactions ; quasigeostrophic ; synoptic scale
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-25
    Description: Cold-pool-driven convective initiation is investigated in high-resolution, convection-permitting simulations with a focus on the diurnal cycle and organization of convection and the sensitivity to grid size. Simulations of four different days over Germany were performed using the ICON-LEM model with grid sizes from 156 to 625 m. In these simulations, we identify cold pools, cold-pool boundaries and initiated convection. Convection is triggered much more efficiently in the vicinity of cold pools than in other regions and can provide as much as 50% of total convective initiation, in particular in the late afternoon. By comparing different model resolutions, we find that cold pools are more frequent, smaller and less intense in lower-resolution simulations. Furthermore, their gust fronts are weaker and less likely to trigger new convection. To identify how model resolution affects this triggering probability, we use a linear causal graph analysis. In doing so, we postulate a graph structure with potential causal pathways and then apply multi-linear regression accordingly. We find a dominant, systematic effect: reducing grid sizes directly reduces upward mass flux at the gust front, which causes weaker triggering probabilities. These findings are expected to be even more relevant for km-scale, numerical weather prediction models. We thus expect that a better representation of cold-pool-driven convective initiation will improve forecasts of convective precipitation.
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...