ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
Collection
Keywords
Language
  • English  (2)
Years
  • 1
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-05-19
    Description: This observational study provides variations of surface fluxes and other ancillary atmospheric/surface/soil data based on in-situ measurements made at Mukhrino field station located at in the middle taiga zone of the West Siberian Lowland. Turbulent fluxes of momentum, sensible and latent heat, CO2 and СH4 were measured with the EC technique. Measurements in the atmosphere were supplemented by measurements of heat flux through the soil, radiation balance and soil temperature at several levels and atmospheric boundary layer structure and dynamics. Most of the available energy is released as latent heat flux, while maximum sensible heat fluxes are more than 3 times lower. Net CO2 sink was comparatively high but was typical for a wetland area. Measurements show that the swamp is a source of methane. There is a gradual increase in the methane flux during the period under consideration, which is probably associated with soil heating. At night, the methane flux becomes smaller in absolute value, close to zero. This can be associated with the weakening of the turbulent exchange, as evidenced by the values of the dynamic velocity close to zero. The accumulation of methane in the surface and boundary layers was observed due to weak mixing in the low stably stratified boundary layer. The dependence of the dynamic roughness length on the atmospheric stability is established, and the coefficients relating the ratio of thermal and dynamic roughness length to the Reynolds number are determined. The work was supported by Russian Science Foundation grant 22-47-04408.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-23
    Description: The modeling of the atmospheric boundary layer over sea ice is still challenging because of the complex interaction between clouds, radiation and turbulence over the often inhomogeneous sea ice cover. There is still much uncertainty concerning sea ice roughness, near‐surface thermal stability and related processes, and their accurate parameterization. Here, a regional Arctic climate model forced by ERA‐Interim data was used to test the sensitivity of climate simulations to a modified surface flux parameterization for wintertime conditions over the Arctic. The reference parameterization as well as the modified one is based on Monin–Obukhov similarity theory, but different roughness lengths were prescribed and the stability dependence of the transfer coefficients for momentum, heat and moisture differed from each other. The modified parameterization accounts for the most comprehensive observations that are presently available over sea ice in the inner Arctic. Independent of the parameterization used, the model was able to reproduce the two observed dominant winter states with respect to cloud cover and longwave radiation. A stepwise use of the different parameterization assumptions showed that modifications of both surface roughness and stability dependence had a considerable impact on quantities such as air pressure, wind and near‐surface turbulent fluxes. However, the reduction of surface roughness to values agreeing with those observed during the Surface Heat Budget of the Arctic Ocean campaign led to an improvement in the western Arctic, while the modified stability parameterization had only a minor impact. The latter could be traced back to the model's underestimation of the strength of stability over sea ice. Future work should concentrate on possible reasons for this underestimation and on the question of generality of the results for other climate models.
    Description: The modeling of the atmospheric boundary layer over sea ice is challenging. This is, among others, due to the distinct sea ice surface roughness and pressure ridges as shown in the image, and the often stably stratified atmosphere. We quantified the impact of used parameterizations and show that both surface roughness and stability dependence have a considerable impact on near‐surface turbulent fluxes and atmospheric circulation in Arctic climate simulations.
    Description: German Research Foundation (DFG)
    Description: Helmholtz Association (HGF), POLEX http://dx.doi.org/10.13039/100003872
    Description: Russian Science Foundation (RSF) http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...