ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1)
Collection
Keywords
Language
  • English  (1)
Years
  • 1
    Publication Date: 2022-04-01
    Description: We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid‐tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high‐resolution isotope‐enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2O and its isotopologue HDO (expressed as δD) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro‐meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2O, δD} distributions. The use of idealized process curves in the {H2O, δD} phase space allows us to attribute isotopic changes to contributions from (a) air mass mixing, (b) Rayleigh condensation during convection, and (c) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration in saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of {H2O, δD} over Africa and other regions in order to better quantify characteristics of the hydrological cycle.
    Description: Key Points: New Lagrangian framework to attribute variability in {H2O, δD} distributions to air mass mixing and phase changes of water. Application to West African Monsoon season 2016 shows characteristic mixing and precipitation effects along trajectories. New framework can be used for the interpretation of satellite and in‐situ observations, and for model validation in future work.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Swiss National Science Foundation
    Description: European Space Agency
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Ministerium für Wissenschaft, Forschung und Kunst Baden‐Württemberg (MWK) http://dx.doi.org/10.13039/501100003542
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...