ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • English  (5)
  • 1
    Publication Date: 2022-10-06
    Description: The Humboldt Upwelling System is of global interest due to its importance to fisheries, though the origin of its high productivity remains elusive. In regional physical‐biogeochemical model simulations, the seasonal amplitude of mesozooplankton net production exceeds that of phytoplankton, indicating “seasonal trophic amplification.” An analytical approach identifies amplification to be driven by a seasonally varying trophic transfer efficiency due to mixed layer variations. The latter alters the vertical distribution of phytoplankton and thus the zooplankton and phytoplankton encounters, with lower encounters occurring in a deeper mixed layer where phytoplankton are diluted. In global model simulations, mixed layer depth appears to affect trophic transfer similarly in other productive regions. Our results highlight the importance of mixed layer depth for trophodynamics on a seasonal scale with potential significant implications, given mixed layer depth changes projected under climate change.
    Description: Plain Language Summary: The Humboldt Upwelling System is a fishery‐important region. A common assumption is that a certain amount of phytoplankton supports a proportional amount of fish. However, we find that a small seasonal change in phytoplankton can trigger a larger variation in zooplankton. This implies that one may underestimate changes in fish solely based on phytoplankton. Using ecosystem model simulations, we investigate why changes of phytoplankton are not proportionally reflected in zooplankton. The portion of phytoplankton that ends up in zooplankton is controlled by the changing depth of the surface ocean “mixed layer.” The “mixed layer” traps both the phytoplankton and zooplankton in a limited amount of space. When the “mixed layer” is shallow, zooplankton can feed more efficiently on phytoplankton as both are compressed in a comparatively smaller space. We conclude that in the Humboldt System, and other “food‐rich” regions, feeding efficiently, determined by the “mixed layer,” is more important than how much food is available.
    Description: Key Points: Environmental factors strongly affect plankton trophodynamics on a seasonal scale. Seasonal trophic amplification in the Humboldt system is driven by mixed layer dynamics. Mixed layer depth and food chain efficiency correlate also in other productive regions.
    Description: China Sponsorship Council
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-11
    Description: This paper describes the rationale and the protocol of the first component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a, http://www.isimip.org, last access: 2 November 2023) and the associated set of climate-related and direct human forcing data (CRF and DHF, respectively). The observation-based climate-related forcings for the first time include high-resolution observational climate forcings derived by orographic downscaling, monthly to hourly coastal water levels, and wind fields associated with historical tropical cyclones. The DHFs include land use patterns, population densities, information about water and agricultural management, and fishing intensities. The ISIMIP3a impact model simulations driven by these observation-based climate-related and direct human forcings are designed to test to what degree the impact models can explain observed changes in natural and human systems. In a second set of ISIMIP3a experiments the participating impact models are forced by the same DHFs but a counterfactual set of atmospheric forcings and coastal water levels where observed trends have been removed. These experiments are designed to allow for the attribution of observed changes in natural, human, and managed systems to climate change, rising CH4 and CO2 concentrations, and sea level rise according to the definition of the Working Group II contribution to the IPCC AR6.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-27
    Description: The European Green Deal (EGD) represents the most ambitious environmental policy framework in European history, aimed at improving the health and well-being of citizens and future generations through climate action and becoming the first climate-neutral region in the world by 2050. The EC has initiated the European Democracy Action Plan and the European Climate Pact to include the participation of citizens in a meaningful way to help achieve these goals (i.e. not simply a tokenistic gesture or box-ticking exercise). While these efforts to ensure greater citizen participation and deliberation in environmental policy are good first steps, there is still a lack of clarity about what meaningful citizen engagement should look like. This paper will propose that for such efforts to be successful, we need to assess different perspectives in the debate and provide recommendations based on this. This paper provides a systematic review of various approaches within the academic literature on citizen participation and deliberation in environmental policy (ecocentrism, biocentrism, ecomodernism, ecofeminism, environmental pragmatism, environmental citizenship, environmental rights, and environmental justice). Following this, we provide a list of 16 criteria (in five thematic sections) for policymakers, civil society organisations (CSOs), and society, to ensure meaningful citizen participation and deliberation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-18
    Description: The impact of the megacities of the world on global tropospheric ozone, and conversely, the extent to which megacities are influenced by emissions of ozone precursors from outside of the megacities is examined under the four alternative RCP ("Representative Concentration Pathway") emissions scenarios. Despite accounting for about 6% of present-day anthropogenic emissions of ozone precursor species, the contribution of emissions from megacities to global tropospheric ozone is calculated to be 0.84%. By 2100 this contribution falls to between 0.18% and 0.62% depending on the scenario, with the lower value being for the most-polluting of the four future emissions scenarios due to stringent controls on ozone precursor emissions from highly populated areas combined with a stronger tropospheric background ozone field. The higher end of this range is from the least-polluting of the four emissions scenarios, due to lower background tropospheric ozone combined with the use of a simpler downscaling methodology in the construction of the scenario, which results in higher emissions from megacities. Although the absolute impact of megacities on global ozone is small, an important result of this study is that under all future scenarios, future air quality in megacities is expected to be less influenced by local emissions within the cities, but instead more influenced by emission sources outside of the cities, with mixing ratios of background ozone projected to play an increasing role in megacity air quality throughout the 21st century. Assumptions made when downscaling the emissions scenarios onto the grids used in such modelling studies can have a large influence on these results; future generations of emissions scenarios should include spatially explicit representations or urban development suitable for air quality studies using global chemical transport models.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-15
    Description: Geoarchives in ancient settlement sites and their environs bear valuable information about Holocene landscape evolution and human–environment interactions. During the last six millennia, sea-level and coastline changes have had a significant impact on coastal settlements, some of which even had to be relocated. This paper reveals new insights into the spatio-temporal development of the Lycian city of Limyra. Selected sediment cores were analyzed using a multiproxy approach, combining sedimentology, geochemistry, micropaleontology, and 14C dating. When the postglacial sea-level rise decelerated, a coastal barrier and a deep lake, presumably a lagoon, evolved after the mid-Holocene. The siltation history of the lake is complex: three coastal peat layers (mid-4th millennium BC, end of 3rd/beginning of 2nd millennium BC, beginning of 1st millennium BC), indicate periods of semiterrestrial conditions. That they are sandwiched by lake sediments is consistent with new expansion phases of the lake, most likely triggered by coseismic subsidence. There is evidence of a former lakeshore, dated to between 1400 and 1100 BC, with an intentionally deposited layer of anthropogenic remains, now at 5.5 m below the surface. In the mid-1st millennium BC, the lake silted up, river channels evolved, and people started to settle the area of the later city of Limyra.
    Keywords: 551.7 ; ancient city ; Eastern Mediterranean ; Finike plain ; landscape development ; paleogeography ; sea level
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...