ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-05
    Description: The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired.
    Description: Plain Language Summary: When satellites take images of Earth, they usually do so from directly above (or as close to it as is reasonably possible). In this comment, we show that for studies that use imagery of Earth at night, it may be beneficial to take several images of the same area at different angles within a short period of time. For example, different types of lights shine in different directions (street lights usually shine down, while video advertisements shine sideways), and tall buildings can block the view of a street from some viewing angles. Additionally, since views from different directions pass through different amounts of air, imagery at multiple angles could be used to obtain information about Earth's atmosphere, and measure artificial and natural night sky brightness. The main point of the paper is to encourage researchers, funding agencies, and space agencies to think about what new possibilities could be achieved in the future with views of night lights at different angles.
    Description: Key Points: Remote sensing using the visible band at night is more complex than during the daytime, especially due to the variety of artificial lights. Views of night lights intentionally taken from multiple angles provide several advantages over near‐nadir or circumstantial view geometries. Night lights remote sensing would benefit from greater consideration of the role viewing geometry plays in the observed radiance.
    Description: EC H2020 H2020 Societal Challenges http://dx.doi.org/10.13039/100010676
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Slovak Research and Development Agency
    Description: Xunta de Galicia (Regional Government of Galicia) http://dx.doi.org/10.13039/501100010801
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: University of Hong Kong http://dx.doi.org/10.13039/501100003803
    Description: Fonds de recherche du Québec
    Description: EC Emprego, Assuntos Sociais e Inclusão European Social Fund http://dx.doi.org/10.13039/501100004895
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: City of Cologne, Germany
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-31
    Description: The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature – Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature’s contributions to people, and quality of life.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-18
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-18
    Description: The use of carbon dioxide as a feedstock for a broad range of products can help mitigate the effects of climate change through long‐term removal of carbon or as part of a circular carbon economy. Research on capture and conversion technologies has intensified in recent years, and the interest in deploying these technologies is growing fast. However, sound understanding of the environmental and economic impacts of these technologies is required to drive fast deployment and avoid unintended consequences. Life cycle assessments (LCAs) and techno‐economic assessments (TEAs) are useful tools to quantify environmental and economic metrics; however, these tools can be very flexible in how they are applied, with the potential to produce significantly different results depending on how the boundaries and assumptions are defined. Built on ISO standards for generic LCAs, several guidance documents have emerged recently from the Global CO2 Initiative, the National Energy Technology Laboratory, and the National Renewable Energy Laboratory that further define assessment specifications for carbon capture and utilization. Overall agreement in the approaches is noted with differences largely based on the intended use cases. However, further guidance is needed for assessments of early‐stage technologies, reporting details, and reporting for policymakers and nontechnical decision‐makers.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-18
    Description: The Digital Revolution, including technologies such as virtual and augmented reality, additive manufacturing or 3D-printing, (general purpose) artificial intelligence, or the Internet of Things, has entered the public discourse in many countries. Looking back, it is almost impossible to believe that digitalization is barely featured in the 2030 Agenda or the Paris Agreement. It is increasingly clear that digital changes, we refer to them as the Digital Revolution, are becoming a key driving force in societal transformation. The transformation towards sustainability for all must be harmonized with the threats, opportunities and dynamics of the Digital Revolution, the goals of the 2030 Agenda and the Paris Agreement. At the same time, the digital transformation will radically alter all dimensions of global societies and economies and will therefore change the interpretation of the sustainability paradigm itself. Digitalization is not only an ‘instrument’ to resolve sustainability challenges, it is also fundamental as a driver of disruptive change. This report that focuses on the Digital Revolution is the second one by The World in 2050 (TWI2050) that was established by the International Institute for Applied Systems Analysis (IIASA) and other partners to provide scientific foundations for the 2030 Agenda. This report is based on the voluntary and collaborative effort of more than 50 authors and contributors from about 20 institutions, and some 100 independent experts from academia, business, government, intergovernmental and non-governmental organizations from all the regions of the world, who met four times at IIASA to develop science-based strategies and pathways toward achieving the Sustainable Development Goals (SDGs). Presentations of the TWI2050 approach and work have been made at many international meetings such as the United Nations Science, Technology and Innovation Forums and the United Nations High-level Political Forums. In 2018, the first report by TWI2050 on Transformations to Achieve the Sustainable Development Goals identified Six Exemplary Transformations needed to achieve the SDGs and long-term sustainability to 2050 and beyond: i) Human Capacity & Demography; ii) Consumption & Production; iii) Decarbonization & Energy, iv) Food, Biosphere & Water; v) Smart Cities and vi) Digital Revolution. The focus of this report is the Sixth Transformation, The Digital Revolution. Although it is arguably the single greatest enabler of sustainable development, it has, in the past, helped create many negative externalities like transgression of planetary boundaries. Progress on the SDGs will be facilitated if we can build and implement detailed science, technology and innovation (STI) roadmaps at all levels that range from local to global. STI is a forceful driver of change connected to all 17 SDGs. The Digital Revolution provides entirely new and enhanced capacities and thus serves as a major force in shaping both the systemic context of transformative change and future solutions; at the same time it potentially carries strong societal disruptive power if not handled with caution, care, and innovativeness. This report assesses all the positive potential benefits digitalization brings to sustainable development for all. It also highlights the potential negative impacts and challenges going forward, particularly for those impacted by the ‘digital divide’ that excludes primarily people left behind during the Industrial Revolution like the billion that go hungry every night and the billion who do not have access to electricity. The report outlines the necessary preconditions for a successful digital transformation, including prosperity, social inclusion, environmental sustainability and good governance. Importantly it outlines some of the dramatic social implications associated with an increasingly digital future. It also covers a topic that so far has not been sufficiently dealt with in the cross-over discussions between sustainability and the Digital Revolution, that is, the considerations about related governance aspects.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-18
    Description: Until very recently, governments of many countries, as well as their supporting organizations, have primarily addressed the biological, technical and economic aspects of aquaculture. In contrast, social and cultural aspects of aquaculture production have taken a backseat. Drawing on the observation that aquaculture development in Western Societies has largely failed to address these social effects across different scales and contexts, this paper offers a new way of capturing and visualising the diverse social dimensions of aquaculture. It does so by testing the ability to operationalise a set of social dimensions based on categories and indicators put forward by the United Nations, using several case studies across the North Atlantic. Local/regional stakeholder knowledge realms are combined with scientific expert knowledge to assess aquaculture operations against these indicators. The approach indicates that one needs to have a minimum farm size in order to have an impact of a visible scale for the different social dimension categories. While finfish aquaculture seems to be more social impactful than rope mussel farming, the latter can hold important cultural values and contribute to place-based understanding, connecting people with place and identity, thus playing a vital role in maintaining the working waterfront identity. It could be shown that aquaculture boosts a potential significant pull-factor to incentivise people to remain in the area, keeping coastal communities viable. By visualising the social effects of aquaculture, a door may be opened for new narratives on the sustainability of aquaculture that render social license and social acceptability more positive.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-29
    Description: Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet.
    Keywords: polar ice core; microstructure; borehole deformation; fabric; texture; ice flow modelling ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-01
    Description: We report results from geoarchaeological investigations at Cuncaicha rock shelter (4480 m above sea level) in the high Andes of southern Peru. Using field observations, geomorphological, micromorphological, micro‐Fourier transform infrared spectroscopy, Bayesian modeling of radiocarbon ages, and archaeological data, we analyzed the entire stratigraphic sequence to determine depositional and postdepositional processes and agents to assess the impact of bioturbation and to correlate the deposits with regional paleoenvironmental information. The archaeological record is represented well on a microscale, and bioturbation has not destroyed the stratigraphic integrity. The Terminal Pleistocene sediments that contain the oldest archaeological material at the site, dating to ~12.3–11.1 ka, are especially well preserved and capped by a layer of tufa. Depositional changes from autochthonous carbonate precipitation during the Terminal Pleistocene toward allochthonous aeolian sedimentation in the Early Holocene reflect changing environmental and climatic conditions. Formation of a soil during the Late‐Middle Holocene caused postdepositional alterations and likely correlates to variable environmental conditions. We use these results to formulate a site formation model for Cuncaicha rock shelter that integrates archaeological, chronological, and paleoenvironmental data.
    Description: Deutsche Forschungsgemeinschaft, Germany http://dx.doi.org/10.13039/501100001659
    Description: National Science Foundation, United States
    Keywords: ddc:551.447 ; ddc:558
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-01
    Description: The radiocarbon signature of respired CO2 (∆14C‐CO2) measured in laboratory soil incubations integrates contributions from soil carbon pools with a wide range of ages, making it a powerful model constraint. Incubating archived soils enriched by “bomb‐C” from mid‐20th century nuclear weapons testing would be even more powerful as it would enable us to trace this pulse over time. However, air‐drying and subsequent rewetting of archived soils, as well as storage duration, may alter the relative contribution to respiration from soil carbon pools with different cycling rates. We designed three experiments to assess air‐drying and rewetting effects on ∆14C‐CO2 with constant storage duration (Experiment 1), without storage (Experiment 2), and with variable storage duration (Experiment 3). We found that air‐drying and rewetting led to small but significant (α 〈 0.05) shifts in ∆14C‐CO2 relative to undried controls in all experiments, with grassland soils responding more strongly than forest soils. Storage duration (4–14 y) did not have a substantial effect. Mean differences (95% CIs) for experiments 1, 2, and 3 were: 23.3‰ (±6.6), 19.6‰ (±10.3), and 29.3‰ (±29.1) for grassland soils, versus −11.6‰ (±4.1), 12.7‰ (±8.5), and −24.2‰ (±13.2) for forest soils. Our results indicate that air‐drying and rewetting soils mobilizes a slightly older pool of carbon that would otherwise be inaccessible to microbes, an effect that persists throughout the incubation. However, as the bias in ∆14C‐CO2 from air‐drying and rewetting is small, measuring ∆14C‐CO2 in incubations of archived soils appears to be a promising technique for constraining soil carbon models.
    Description: Plain Language Summary: Soils play a key role in the global carbon cycle by sequestering carbon from the atmosphere for decades to millennia. However, it is unclear if they will continue to do so as the climate changes. Microbial decomposition of soil organic matter returns carbon back to the atmosphere, and radiocarbon dating of this returning CO2 (∆14C‐CO2) can be used to quantify how long carbon is stored in ecosystems. Incubating archived soils could provide unique insight into soil carbon sequestration potential by quantifying the change in ∆14C‐CO2 over time. However, air‐drying, duration of archiving, and subsequent rewetting of soils may bias estimates of sequestration potential by altering the balance of younger versus older carbon leaving the soil. We compared ∆14C‐CO2 from soils incubated with and without air‐drying and archiving, and found that the air‐dried soils appeared to release slightly older carbon than soils that had never been air‐dried. The amount of time the soils were archived did not have an effect. Since the bias from air‐drying and rewetting was small, incubating archived soils appears to be a promising technique for improving our ability to model soil carbon cycling under global climate change.
    Description: Key Points: ∆14C of CO2 measured in incubations of archived soils provides additional constraints for soil carbon models. Air‐drying and rewetting soils shifted the ∆14C of respired CO2 by 10‰–20‰ independent of the duration of storage. Differences in direction and magnitude of ∆14C‐CO2 shifts between forests and grasslands depended on sampling year and system C dynamics.
    Description: EC, H2020, H2020 Priority Excellent Science, H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: https://doi.org/10.5281/zenodo.4959705
    Keywords: ddc:551.9 ; ddc:631.41 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-24
    Description: The landscape of Antarctica, hidden beneath kilometre‐thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre‐formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under‐represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U‐shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.
    Description: Airborne ice‐penetrating radar data reveal the evolution of the subglacial morphology of the Jutulstraumen Glacier drainage system in western Dronning Maud Land. We identify various geomorphological patterns that are related to different stages of subglacial erosion and allow us to reconstruct the temporal sequence by which ice flow modified the topography since the beginning of glaciation of Antarctica.
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...