ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (10)
  • 2000-2004  (10)
Collection
Keywords
Language
Year
  • 1
    Call number: 12/M 01.0453 ; AWI A3-01-0215 ; PIK N 071-01-0481 ; PIK N 071-0115 ; PIK N 071-02-0351 ; PIK N 071-01-0564
    In: Climate change 2001
    Type of Medium: Monograph available for loan
    Pages: X, 881 S.
    Edition: 1st publ.
    ISBN: 0521014956
    Classification:
    Meteorology and Climatology
    Language: English
    Note: Contents: Foreword. - Preface. - Summary for Policymakers. - Technical Summary. - 1 The Climate System: an Overview. - 2 Observed Climate Variability and Change. - 3 The Carbon Cycle and Atmospheric Carbon Dioxide. - 4 Atmospheric Chemistry and Greenhouse Gases. - 5 Aerosols, their Direct and Indirect Effects. - 6 Radiative Forcing of Climate Change. - 7 Physical Climate Processes and Feedbacks. - 8 Model Evaluation. - 9 Projections of Future Climate Change. - 10 Regional Climate Information - Evaluation and Projections. - 11 Changes in Sea Level. - 12 Detection of Climate Change and Attribution of Causes. - 13 Climate Scenario Development. - 14 Advancing Our Understanding. - Appendix I Glossary. - Appendix II SRES Tables. - Appendix Ill Contributors to the IPCC WGI Third Assessment Report. - Appendix IV Reviewers of the IPCC WGI Third Assessment Report. - Appendix V Acronyms and Abbreviations. - Appendix VI Units. - Appendix VII Some Chemical Symbols used in this Report. - Appendix VIII Index.
    Location: Reading room
    Location: Reading room
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Using data of two GPS campaigns as well as two ERS-1/2 Single Look Complex (SLC) datasets, we studied the distribution of co-seismic and post-earthquake surface deformation of the major (moment magnitude Mw=8.1) Antofagasta (Chile) event of 30 July 1995. Earthquake-related fault dimensions and inter-seismic surface deformation patterns were achieved by comparing results from the GPS and interferometric Synthetic Aperture Radar (SAR) investigations and by applying interpretative forward dislocation modelling. SAR data post-dating the major earthquake suggest a change in deformation directions after the earthquake within the first 50–80 km normal to the Chilean coast and show opposite signs when comparing results of the western part of the study area with those of the eastern part. We propose that this change in direction might be indicative of a superposition of relatively rapid post-seismic slip along a deeper section of the fault zone and/or distributed relaxation of the lower crust/upper mantle and seismic loading along the coastal part of the fore-arc. Assuming that the Antofagasta earthquake ruptured the entire seismogenic interface, we used the derived depth distribution of the interplate fault for the estimation of seismic moment rates. Taking into account the rate and size distribution of teleseismic events from the USGS and recently derived plate convergence rates, we constrained the size of the maximum earthquake and approximated the apparent recurrence intervals of events similar to the Antofagasta event in the area.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Protokoll zum 19. Kolloquium „Elektromagnetische Tiefenforschung“
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Protokoll zum 19. Kolloquium „Elektromagnetische Tiefenforschung“
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Protokoll zum 20. Kolloquium „Elektromagnetische Tiefenforschung“
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Protokoll über das Kolloquium Elektromagnetische Tiefenforschung: 18. Kolloquium: Altenberg, 20.3. - 24.3.2000
    Publication Date: 2021-09-17
    Description: We consider 2-D models with anisotropic sections using the finite element (FE) technique. Part 1 gives the boundary value problem, Part 2 describes the numerical realization of the FE algorit hm, Part 3 compares results from the FE algorithm with the finite difference solution of Pek & Verner (1997). Part 4 presents modelling results for various types of anisotropy: horizontal, vertical and dipping anisotropy.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Protokoll zum 20. Kolloquium „Elektromagnetische Tiefenforschung“
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-08
    Description: The Effect of the Geocentric Gravitational Constant on Scale: It is well known that the geocentric gravitational constant (GM) is a scaling factor for the reference frame realized by satellite techniques. One must be aware that its effects on the orbit and on the terrestrial reference frame (station positions) are different. The scale effect on restituted orbits is 1/3* (dGM/GM) (relative error of GM) for all kinds of satellites. But the effect on the terrestrial frame depends on the height of the satellites, on tracking techniques and on the solved for parameters. For ranging techniques such as SLR, the scale variation of the terrestrial frame is 1/3*(dGM/GM)*(rSat) / (rEarth), if the range biases are not solved for. For GPS the GM error is mostly absorbed by the clock estimates (or eliminated by the double differences), only the remaining few percents go into the scale of terrestrial reference frame. For instance if one is using a GM value of 3.986004418 1014 m3/s2 instead of 3.986004415 1014 m3/s2 (relative variation is 7.5 10-10) the scale variation of the terrestrial frame is only about 6 10-11. Physically, the error in the z-direction of the antenna phase center offsets on board GPS has nothing to do with GM. But its effect on the terrestrial reference frame is practically equivalent to an error in GM. For instance, if all GPS satellites have a 7.1 cm error in dz, the effect on the station position is equivalent to a relative error of 8 10-9 in GM (e.g. changing GM from 3.986004418 to 3.986004386 1014 m3/s2). Satellite Antenna Phase Center Offsets and Scale Errors in GPS Solutions: ITRF2000 solutions (see Lareg, 2001) have shown that there are ppb level scale differences between GPS and other techniques and among various GPS Analysis Centers. The trends of the scale differences reach 0.2 ppb per year. The uncertainties of the current available Earth’s gravitational constant could only cause less than 0.1 ppb scale error for GPS technique. On the other hand, the uncertainties in the satellite antenna phase center offsets could produce ppb level scale error. Various BLOCK types of GPS satellites have different phase center errors. The number of BLOCK IIR satellites increases from year to year. This could cause trend-like variations in the scale error. Beside station positions, satellite antenna phase center errors affect also the clock, Zenith Path Delay, and other solved for parameters perceptibly.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...