ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
  • 2010-2014  (2)
Collection
Language
  • English  (2)
Years
Year
  • 1
    Publication Date: 2020-02-12
    Description: A unique and very interesting earthquake of magnitude Mw 7.2 occurred in the Van region of Turkey on October 23, 2011 that caused a heavy loss of human lives and properties. The earthquake occurred on a blind oblique thrust fault oriented towards the NE–SW direction and dipping towards NW as evidenced by focal mechanism solution and aftershock distribution. In this study, we analyzed the seismogenesis and earthquake triggering during this sequence with the help of estimated seismological parameters (b-value of frequency–magnitude relation, p-value of aftershocks temporal decay and D-value of fractal dimension), 2D mapping of b- and p-values, 3D mapping of b-value and coseismic Coulomb stress modeling. The estimated seismic b-value equal to 0.89 reveals that the mainshock occurred in a highly stressed region and sequence comprised larger magnitude aftershocks due to the presence of large size asperities within the rupture zone. The normal estimate of p-value (0.98) suggests a tectonic genesis of the aftershocks sequence. The estimated D-value equal to 1.80 reveals that rupture propagated in a two-dimensional plane filled up by fractures. The spatial 2D and 3D mapping of seismic b-value suggests that the Van earthquake originated in a highly heterogeneous fractured rock matrix with fluid intrusions into it at deeper depth beneath the mainshock hypocenter region. The estimated coseismic Coulomb stress using the variable slip model for depth range 0–30 km exhibits a ‘butterfly’ pattern and most of the aftershocks fall (90%) in the region of enhanced Coulomb stress. This suggests that most of the aftershock activities have been triggered by transfer of positive Coulomb stress due to coseismic slip of the mainshock. The results estimated in the present study have potential useful implications in future seismic hazard assessment and risk mitigation in Van and the surrounding regions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Tsunami mitigation, preparedness and early warning initiatives have begun at the global scale only after the tragic event of Sumatra in 2004. Turkey, as a country with a history of devastating earthquakes, has been also affected by tsunamis in its past. In this paper we present the Tsunami Hazard in the Eastern Mediterranean and its connected seas (Aegean, Marmara and Black Sea) by providing detailed information on historically and instrumentally recorded significant tsunamigenic events surrounding Turkey, aiming to a better understanding of the Tsunami threat to the Turkish coasts. In addition to the review of the Tsunami hazard, we have studied a possible Tsunami source area between Rhodes and SW of Turkey using Tsunami numerical model NAMI DANCE-two nested domains. We have computed a maximum positive amplitude of 1.13 m and maximum negative amplitude of −0.5 m at the Tsunami source by this study. The distribution of maximum positive amplitudes of the water surface elevations in the selected Tsunami forecast area and time histories of water level fluctuations near selected locations (Marmaris, Dalaman, Fethiye and Kas towns) indicate that the maximum positive amplitude near the coast in the selected forecast area exceeds 3.5 m. The arrival time of maximum wave to Marmaris, Dalaman, is 10 min, while that of Fethiye and Kas towns is 15–20 min. The maximum positive amplitudes near the shallow region of around 10 m depth are 3 m (Marmaris), 1 m (Dalaman), 2 m (Fethiye) and 1 m (Kas). Maximum positive amplitudes of water elevations in the duration of 4 h simulation of the Santorini-Minoan Tsunami in around 1600 BC in the Aegean Sea are also calculated based on a simulation performed using 900 m grid resolution of Aegean sea bathymetry with a 300 m collapse of 10 km diameter of Thera (Santorini) caldera. We have also presented the results of the Tsunami modeling and simulation for Marmara Sea obtained from a previous study. Last part of this paper provides information on the establishment of a Tsunami Warning Center by KOERI, which is expected to act also as a regional center under the UNESCO Intergovernmental Oceanographic Commission – Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North-Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS) initiative, emphasizing on the challenges together with the future work needed to be accomplished.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...