ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Publication Database PIK  (2)
Collection
  • Other Sources  (2)
Source
Language
Years
  • 1
    Publication Date: 2022-03-21
    Description: Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-06
    Description: The climate change impact and adaptation simulations from the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model ensemble simulations for 60 representative global locations covering all global wheat mega environments. The multi-model ensemble reported here has been thoroughly benchmarked against a large number of experimental data, including different locations, growing season temperatures, atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 10.5281/zenodo.4027033). Two scientific publications have been published based on some of these data here.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...