ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Articles and Proceedings (GFZpublic)  (3)
  • 1
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-22
    Description: The Anarraaq clastic-dominated (CD) Zn-Pb-Ag deposit (Red Dog district, Alaska, USA) has an inferred mineral resource of 19.4 Mt at 14.4% Zn, 4.2% Pb, and 73 g/t Ag and is spatially associated with a separate ~1 Gt barite body. This study presents new cross sections and petrographic evidence from the Anarraaq area. The barite body, previously shown to have formed in a shallow subsurface environment akin to a methane cold seep, contains multiple generations of barite with locally abundant calcite masses, which are discordant to sedimentary laminae, and is underlain by an interval of massive pyrite containing abundant framboids and radiolarians. Calcite and pyrite are interpreted to have formed by methane-driven diagenetic alteration of host sediment at the sulfate-methane transition (SMT). The sulfide deposit contains two zones of Zn-Pb mineralization bounded by faults of unknown displacement. The dominant hydrothermal minerals are marcasite, pyrite, sphalerite, quartz, and galena. The presence of hydrothermal pseudomorphs after barite, early pyrite resembling diagenetic pyrite associated with the barite body, and hydrothermal quartz and sphalerite filling voids formed by dissolution of carbonate all suggest that host sediment composition and origin was similar to that of the barite body prior to hydrothermal mineralization. Rhenium-osmium isochron ages of Ikalukrok mudstone (339.1 ± 8.3 Ma), diagenetic pyrite (333.0 ± 7.4 Ma), and hydrothermal pyrite (334.4 ± 5.3 Ma) at Anarraaq are all within uncertainty of one another and of an existing isochron age (~338 Ma) for the Main deposit in the Red Dog district. This indicates that the Anarraaq deposit formed soon after sedimentation and that hydrothermal activity was approximately synchronous in the district. The initial Os composition of the Anarraaq isochrons (0.375 ± 0.019–0.432 ± 0.025) is consistent with contemporaneous seawater, indicating that a mantle source was not involved in the hydrothermal system. This study highlights the underappreciated but important role of early, methane-driven diagenetic processes in the paragenesis of some CD deposits and has important implications for mineral exploration.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-23
    Description: The minor and trace element composition of minerals provides critical insights into a variety of geological processes. Multi-element mapping by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an important technique applied for this purpose and although the method is rapidly advancing, there remains a fundamental compromise between spatial resolution, detection limit, and experiment duration when using sequential mass analyzers. To address the limitation of limited analyte selection for high spatial resolution maps imposed by the sequential nature of typical quadrupole (Q)-ICP-MS, we tested the Aerosol Rapid Introduction System (ARIS) for repeat mapping of the same area. The ARIS is a high-speed transfer tubing system that reduces aerosol washout times, permitting resolution of individual pulses at 40–60 Hz. Here, the ARIS was tested not for pulse resolution but with novel operating conditions optimized to perform fast, high spatial resolution mapping of minor and trace element distribution in pyrite and marcasite. For this purpose, ablation was conducted with a 5 µm beam aperture, a repetition rate of 50 Hz, and a continuous stage scan speed of 40 µm s−1. For each LA-Q-ICP-MS map, data were acquired for six elements with an acquisition time of 20 ms per element. This deliberately reduced the individual pulse resolution of the ARIS but instead exploited the spatial resolution and sensitivity gains afforded by the high-laser repetition rate combined with efficient aerosol transfer. The new method successfully mapped trace elements at single to double-digit parts per million levels, and the maps reveal fine-scale zoning of trace elements with an effective x and y resolution of 5 µm, while white light interferometry showed that for each experiment, only ca. 1 µm of the sample was removed. Repeated mapping of the same area showed excellent correspondence not only between element concentrations in successive experiments but also in the shape, dimension, and location of regions of interest defined by concentration criteria. The very good repeatability of the elemental maps indicates that for studies requiring more analytes, successive mapping of additional elements is possible. By contrast with conventional very small spot (i.e., 5 µm) analysis, fast repetition rate and stage scan speed mapping avoids down-hole fractionation effects and minimizes accidental analysis of buried invisible inclusions. Compared to conventional LA-ICP-MS mapping, the method reduces the experiment time by 4–8 times.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...