ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • Articles and Proceedings (GFZpublic)  (14)
  • 2020-2022  (5)
  • 2015-2019  (9)
  • 1960-1964
Collection
  • Articles  (14)
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS'11): proceedings of the 2011 IAG International Workshop, Munich, Germany April 13-15, 2011 | International Association of Geodesy symposia
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-18
    Description: Die Geologie des Pilotstandortes Ketzin: Profil einer Tiefenbohrung (Ktzi 200)
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  International Symposium on Advancing Geodesy in a Changing World : Proceedings of the IAG Scientific Assembly, Kobe, Japan, July 30 – August 4, 2017 | International Association of Geodesy symposia ; 149
    Publication Date: 2020-02-12
    Description: The thermosphere causes by far the largest non-gravitational perturbing acceleration of near-Earth orbiting satellites. Especially between 80 km and 1,000 km, the thermospheric density distribution and variations are required to model accurately this acceleration for precise orbit determination (POD), ephemeris computation and re-entry prediction of the Low-Earth Orbiting (LEO) satellites. So far, mostly on-board accelerometers are used to measure the thermospheric density. However, such type of satellite is usually of complex shape and any error or mismodelling in the satellite drag coefficient and satellite effective cross-sectional area will directly propagate into the derived thermospheric density values. At GFZ, an empirical model of the thermospheric mass density denoted as “CH-Therm-2018” has been developed by using 9 years (2001–2009) of CHAMP observations. A completely different approach for thermospheric density determination is based on using satellite laser ranging (SLR) measurements to LEO satellites equipped with retro-reflectors to determine an accurate satellite orbit. These measurements are sensitive to small perturbations acting on the satellite. In order to minimize the error induced by imprecise satellite macro-models, we use in our investigation SLR observations to satellites with a simple spherical shape and thus, relate estimated scaling factors to the thermospheric density. In this paper, we use SLR observations to two ANDE-2 satellites – ANDE-Castor and ANDE-Pollux – as well as SpinSat with altitudes between 248 km and 425 km to calibrate the CH-Therm-2018 model, as well as four other empirical models of thermospheric density, namely CIRA86, NRLMSISE00, JB2008 and DTM2013. For our tests, we chose a period from 16 August 2009 to 26 March 2010 of low solar activity and a period from 29 December 2014 to 29 March 2015 of high solar activity. Using data of a few geodetic satellites obtained at the same and different time intervals allows us to investigate the reliability of the scaling factors of the thermospheric densities provided by the models. We have found that CIRA86 and NRLMSISE00 most significantly overestimate the thermospheric density at the period of low solar activity among the models tested. The JB2008 model is the least scaled model and provides reliable values of the thermospheric density for the periods of both low and high solar activity. The GFZ CH-Therm-2018 model, on the contrary, underestimates the thermospheric density at the time interval of low solar activity. Using SLR observations at longer time intervals should allow to investigate temporal evolution of the scaling factors of these models more precisely.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-22
    Description: Over the last 20 years, a large number of instruments have provided plasma density measurements in Earth's topside ionosphere. In order to utilize all of the collected observations for empirical modeling, it is necessary to ensure that they do not exhibit systematic differences and are adjusted to the same reference frame. In this study, we compare satellite plasma density observations from Gravity Recovery and Climate Experiment (GRACE), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), CHAllenging Minisatellite payload (CHAMP), Swarm, and Communications/Navigation Outage Forecasting System (C/NOFS) missions. Electron densities retrieved from GRACE K-Band Ranging (KBR) system, previously shown to be in excellent agreement with incoherent scatter radar (ISR) measurements, are used as a reference. We find that COSMIC radio occultation (RO) densities are highly consistent with GRACE-KBR observations showing a mean relative difference of urn:x-wiley:21699380:media:jgra56751:jgra56751-math-0001, and therefore no calibration factors between them are necessary. We utilize the outstanding three-dimensional coverage of the topside ionosphere by the COSMIC mission to perform conjunction analysis with in situ density observations from CHAMP, C/NOFS and Swarm missions. CHAMP measurements are lower than COSMIC by urn:x-wiley:21699380:media:jgra56751:jgra56751-math-0002. Swarm densities are generally lower at daytime and higher at nighttime compared to COSMIC. C/NOFS ion densities agree well with COSMIC, with a relative bias of urn:x-wiley:21699380:media:jgra56751:jgra56751-math-0003. The resulting cross-calibration factors, derived from the probability distribution functions, help to eliminate the systematic leveling differences between the data sets, and allow using these data jointly in a large number of ionospheric applications.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  GEM - International Journal on Geomathematics
    Publication Date: 2021-09-29
    Description: This work presents a new extension to B-Splines that enables them to model functions on directed tree graphs such as non-braided river networks. The main challenge of the application of B-splines to graphs is their definition in the neighbourhood of nodes with more than two incident edges. Achieving that the B-splines are continuous at these points is non-trivial. For both, simplification reasons and in view of our application, we limit the graphs to directed tree graphs. To fulfil the requirement of continuity, the knots defining the B-Splines need to be located symmetrically along the edges with the same direction. With such defined B-Splines, we approximate the topography of the Mekong River system from scattered height data along the river. To this end, we first test and validate successfully the method with synthetic water level data, with and without added annual signal. The quality of the resulting heights is assessed besides others by means of root mean square errors (RMSE) and mean absolute differences (MAD). The RMSE values are 0.26 m and 1.05 m without and with added annual variation respectively and the MAD values are even lower with 0.11 m and 0.60 m. For the second test, we use real water level observations measured by satellite altimetry. Again, we successfully estimate the river topography, but also discuss the short comings and problems with unevenly distributed data. The unevenly distributed data leads to some very large outliers close to the upstream ends of the rivers tributaries and in regions with rapidly changing topography such as the Mekong Falls. Without the outlier removal the standard deviation of the resulting heights can be as large as 50 m with a mean value of 15.73 m. After the outlier removal the mean standard deviation drops to 8.34 m.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: In this study, we present an empirical model, named CH-Therm-2018, of the thermospheric mass density derived from 9-year (from August 2000 to July 2009) accelerometer measurements from the CHAllenging Mini-satellite Payload (CHAMP) satellite at altitudes from 460 to 310km. The CHAMP dataset is divided into two 5-year periods with 1-year overlap (from August 2000 to July 2005 and from August 2004 to July 2009) to represent the high-to-moderate and moderate-to-low solar activity conditions, respectively. The CH-Therm-2018 model describes the thermospheric density as a function of seven key parameters, namely the height, solar flux index, season (day of year), magnetic local time, geographic latitude and longitude, as well as magnetic activity represented by the solar wind merging electric field. Predictions of the CH-Therm-2018 model agree well with CHAMP observations (within 20%) and show different features of thermospheric mass density during the two solar activity levels, e.g., the March–September equinox asymmetry and the longitudinal wave pattern. From the analysis of satellite laser ranging (SLR) observations of the ANDE-Pollux satellite during August–September 2009, we estimate 6h scaling factors of the thermospheric mass density provided by our model and obtain the median value equal to 1.267±0.60. Subsequently, we scale up our CH-Therm-2018 mass density predictions by a scale factor of 1.267. We further compare the CH-Therm-2018 predictions with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended (NRLMSISE-00) model. The result shows that our model better predicts the density evolution during the last solar minimum (2008–2009) than the NRLMSISE-00 model.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-14
    Description: Brachiopods present a key fossil group for Phanerozoic palaeo-environmental and palaeo-oceanographical reconstructions, owing to their good preservation and abundance in the geological record. Yet to date, hardly any geochemical proxies have been calibrated in cultured brachiopods and only little is known on the mechanisms that control the incorporation of various key elements into brachiopod calcite. To evaluate the feasibility and robustness of multiple Element/Ca ratios as proxies in brachiopods, specifically Li/Ca, B/Ca, Na/Ca, Mg/Ca, Sr/Ca, Ba/Ca, as well as Li/Mg, we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years with closely monitored ambient conditions, carbonate system parameters and elemental composition of the culture medium. The experimental setup comprised of two control aquariums (pH0 = 8.0 and 8.15, T = 10 °C) and treatments where pCO2 − pH (pH1 = 7.6 and pH2 = 7.35), temperature (T = 16 °C) and chemical composition of the culture medium were manipulated. Our results indicate that the incorporation of Li and Mg is strongly influenced by temperature, growth effects as well as carbonate chemistry, complicating the use of Li/Ca, Mg/Ca and Li/Mg ratios as straightforward reliable proxies. Boron partitioning varied greatly between the treatments, however without a clear link to carbonate system parameters or other environmental factors. The partitioning of both Ba and Na varied between individuals, but was not systematically affected by changes in the ambient conditions. We highlight Sr as a potential proxy for DIC, based on a positive trend between Sr partitioning and carbonate chemistry in the culture medium. To explain the observed dependency and provide a quantitative framework for exploring elemental variations, we devise the first biomineralisation model for brachiopods, which results in a close agreement between modelled and measured Sr distribution coefficients. We propose that in order to sustain shell growth under increased DIC, a decreased influx of Ca2+ to the calcifying fluid is necessary, driving the preferential substitution of Sr2+ for Ca2+ in the crystal lattice. Finally, we conducted micro-computed tomography analyses of the shells grown in the different experimental treatments. We present pore space – punctae – content quantification that indicates that shells built under increased environmental stress, and in particular elevated temperature, contain relatively more pore space than calcite, suggesting this parameter as a potential novel proxy for physiological stress and even environmental conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-14
    Description: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...