ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • CITATION GEO-LEO  (2)
  • 1
    Publication Date: 2021-03-29
    Description: The Itajaí Basin located in the southern border of the Luís Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajaí Group is represented by sandstones and conglomerates (Baú Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeirão Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeirão Neisse (arkosic sandstones and siltites), and Ribeirão do Bode (distal silty turbidites) formations. The Apiúna Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajaí Basin. The Brusque Group and the Florianópolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, São Miguel and Camboriú complexes. The lack of any oceanic crust in the Itajaí Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajaí Basin is temporally and tectonically correlated with the Camaquã Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriápolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.
    Keywords: Dom Feliciano Belt; Ediacaran; Foreland basin; U–Pb SHRIMP ages; Provenance ; 551 ; Earth Sciences; Geophysics/Geodesy; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-05
    Description: Comparing the reflectivity flux at the top and bottom of the melting layer (ML) reveals the overall effect of the microphysical processes occurring within the ML on the particle population. If melting is the only process taking place and all particles scatter in the Rayleigh regime, the reflectivity flux increases in the ML by a constant factor given by the ratio of the dielectric factors. Deviations from this constant factor can indicate that either growth or shrinking processes (breakup, sublimation, and evaporation) dominate. However, inference of growth or shrinking dominance from the increase in reflectivity flux is only possible if other influences (e.g., vertical wind speed) are negligible or corrected. By analyzing radar Doppler spectra and multi‐frequency observations, we correct the reflectivity fluxes for vertical wind and categorize the height profiles by the riming degree at the ML top. We apply this reflectivity flux ratio (ZFR) approach to a multi‐month mid‐latitude winter data set that contains mostly stratiform clouds. The profiles of radar variables in the ML are found to be surprisingly similar for both unrimed and rimed profiles with slight differences, for example, in the absolute values of the reflectivity flux. Statistical analysis of the ZFR suggests that either microphysical processes other than melting are not important or strongly compensate for each other. The results seem to confirm that at least for moderately precipitating stratiform clouds, the melting‐only assumption applied in several retrievals and microphysical schemes is reasonable.
    Description: Plain Language Summary: To better predict precipitation by numerical models and quantify precipitation by observations, it is important to improve the understanding of processes in the melting layer (ML). The ML is the part of clouds where ice particles melt and become rain. We use an approach that assesses whether a tendency toward either growth or shrinking processes is evident in the ML. We assess the uncertainty of the approach, correct for different factors, and apply it to a large data set to derive robust statistics separately for profiles with different characteristic ice particle shapes above the ML. These statistics are surprisingly similar for the different characteristic ice particle shapes and suggest that either growth and shrinking processes are not important in the ML or strongly compensate for each other.
    Description: Key Points: We investigated the growth or shrinking of snowflakes in the melting layer using statistics of multi‐frequency Doppler radar observations. Reflectivity flux analysis indicates only slight differences for unrimed or rimed particles. Growth or shrinking processes either compensate each other or have, on average, only a small impact on the reflectivity flux.
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: University of Cologne
    Description: https://github.com/markuskarrer/ZFR_riming
    Description: http://cpex-lab.de/cpex-lab/EN/Home/JOYCE-CF/JOYCE-CF_node.html
    Description: https://doi.org/10.5281/zenodo.6341509
    Description: https://doi.org/10.5281/zenodo.5959906
    Keywords: ddc:551.57
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...