ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-13
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-26
    Description: An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation(AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturningcirculation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacificdeep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv(parts per million by volume) CO2world of the Pliocene supported subarctic North Pacific deep-water formationand a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we reportorbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organiccarbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with highaccumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surfacewaters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma(million years) transition. This observational analysis is supported by climate modeling results, demonstratingthat atmospheric moisture transport changes, in response to the reduced meridional sea surface temperaturegradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the westernsubarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implica-tions for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of thePacific to global warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-29
    Description: Abstract The {GEOTRACES} Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international {GEOTRACES} programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The {IDP2014} covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The {TEI} data in the {IDP2014} are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including {ASCII} spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the {IDP2014} also contains data quality flags and 1-� data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the {IDP2014} data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4005, doi:10.1029/2005GB002508.
    Description: On the basis of the normalization to phosphate, a significant amount of nitrate is missing from the deep Bering Sea (BS). Benthic denitrification has been suggested previously to be the dominant cause for the BS nitrate deficit. We measured water column nitrate 15N/14N and 18O/16O as integrative tracers of microbial denitrification, together with pore water-derived benthic nitrate fluxes in the deep BS basin, in order to gain new constraints on the mechanism of fixed nitrogen loss in the BS. The lack of any nitrate isotope enrichment into the deep part of the BS supports the benthic denitrification hypothesis. On the basis of the nitrate deficit in the water column with respect to the adjacent North Pacific and a radiocarbon-derived ventilation age of ∼50 years, we calculate an average deep BS (〉2000 m water depth) sedimentary denitrification rate of ∼230 μmol N m−2 d−1 (or 1.27 Tg N yr−1), more than 3 times higher than high-end estimates of the average global sedimentary denitrification rate for the same depth interval. Pore water-derived estimates of benthic denitrification were variable, and uncertainties in estimates were large. A very high denitrification rate measured from the base of the steep northern slope of the basin suggests that the elevated average sedimentary denitrification rate of the deep Bering calculated from the nitrate deficit is driven by organic matter supply to the base of the continental slope, owing to a combination of high primary productivity in the surface waters along the shelf break and efficient down-slope sediment focusing along the steep continental slopes that characterize the BS.
    Description: This study was supported by NSF grants OCE-0136449 and OCE-9981479 to D. M. S., OCE-0118126 and OCE-0324987 to D. C. M., and DFG grant LE 1326/1-1 to M. F. L. The BS cruise was funded by grant OPP-9912122.
    Keywords: Bering Sea ; Denitrification ; Nitrate isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA1215, doi:10.1029/2005PA001205.
    Description: In a piston core from the central Bering Sea, diatom microfossil-bound N isotopes and the concentrations of opal, biogenic barium, calcium carbonate, and organic N are measured over the last glacial/interglacial cycle. Compared to the interglacial sections of the core, the sediments of the last ice age are characterized by 3‰ higher diatom-bound δ 15N, 70 wt % lower opal content and 1200 ppm lower biogenic barium. Taken together and with constraints on sediment accumulation rate, these results suggest a reduced supply of nitrate to the surface due to stronger stratification of the upper water column of the Bering Sea during glacial times, with more complete nitrate consumption resulting from continued iron supply through atmospheric deposition. This finding extends the body of evidence for a pervasive link between cold climates and polar ocean stratification. In addition, we hypothesize that more complete nutrient consumption in the glacial age subarctic Pacific contributed to the previously observed ice age reduction in suboxia and denitrification in the eastern tropical North Pacific by lowering the nutrient content of the intermediate-depth water formed in the subpolar North Pacific. In the deglacial interval of the Bering Sea record, two apparent peaks in export productivity are associated with maxima in diatom-bound and bulk sediment δ 15N. The high δ 15N in these intervals may have resulted from greater surface nutrient consumption during this period. However, the synchroneity of the deglacial peaks in the Bering Sea with similar bulk sediment δ 15N changes in the eastern Pacific margin and the presence of sediment lamination within the Bering Sea during the deposition of the productivity peaks raise the possibility that both regional and local denitrification worked to raise the δ 15N of the nitrate feeding Bering Sea surface waters at these times.
    Description: Financial support for this work was provided by NSF grants OCE-0136449, OCE-9981479, ANT-0453680, by BP and Ford Motor Company through the Princeton Carbon Migration Initiative, and by a NDSEG fellowship to B.G.B. Work conducted aboard the USCG Healy (Healy 0202) was funded by grant OPP-9912122.
    Keywords: Nitrogen isotopes ; Subarctic North Pacific ; Polar stratification hypothesis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: This dissertation contributes to the search for a cause of glacial/interglacial variations in atmospheric carbon dioxide. The hypotheses addressed involve changes in low and high-latitude biological export production. A modelling exercise demonstrates that the paleoceanographic record of calcite preservation places constraints on hypothesized changes in low latitude biological production. The model results indicate that large, production-driven changes in the depth of the calcite saturation horizon during the last ice age would have caused a similar deepening of the calcite lysocline, even when the effect of sediment respiration-driven dissolution is considered. Such a large glacial lysocline deepening is not evident on an ocean-average basis. The results indicate very few mechanisms by which low latitude production could have driven Pleisotocene carbon dioxide variations, generally arguing against a low latitude cause for these variations. The use of N isotopes as a paleoceanographic proxy for nitrate utilization in Southern Ocean was investigated. In order to examine the generation of the link between nitrate utilization and N isotopes in the surface ocean, the isotopic composition of nitrate was studied. The first step in this work was the development of a new method to measure the isotopic composition of nitrate which is amenable to the generation of large, precise data sets. Results from the Southern Ocean demonstrate that the Antarctic and Subantarctic represent distinct regimes of N isotope dynamics. The findings support the use of N isotopes as a proxy for nitrate utilization in the Antarctic. A study of diatom microfossil-bound N in sediments suggests that this N is native to the diatoms, that it is invulnerable to early diagenesis, and that its isotopic compositon varies with that of the sinking flux. Paleoceanographic records of diatom-bound N isotopic composition corroborate the conclusion, previously based on bulk sediment isotopic data, that nitrate utilization was elevated in the glacial Antarctic, representing a major cause of lower glacial atmospheric carbon dioxide levels.
    Description: This research was supported by the National Science Foundation Graduate Fellowship Program, the JOI!USSAC Ocean Drilling Graduate Fellowship Program, and by NSF grant OCE-9201286 to D.C. McCorkle.
    Keywords: Nitrogen ; Isotopes ; Stable isotopes ; Paleoceanography ; Carbon dioxide ; Atmospheric carbon dioxide ; Polarstern (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...