ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-05-12
    Description: We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or different inversion techniques. The first-generation Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional refinements translate into whole-Earth structure. ©2018. The Authors.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-26
    Description: Summary We present a new approach to full waveform inversion (FWI) that enables the assimilation of datasets that expand over time without the need to re-invert all data. This evolutionary inversion rests on a re-interpretation of stochastic L-BFGS, which randomly exploits redundancies to achieve convergence without ever considering the dataset as a whole. Specifically for seismological applications, we consider a dynamic mini-batch stochastic L-BFGS, where the size of mini-batches adapts to the number of sources needed to approximate the complete gradient. As illustration we present an evolutionary FWI for upper-mantle structure beneath Africa. Starting from a 1-D model and data recorded until 1995, we sequentially add contemporary data into an ongoing inversion, showing how (i) new events can be added without compromising convergence, (ii) a consistent measure of misfit can be maintained, and (iii) the model evolves over times as a function of data coverage. Though applied retrospectively in this example, our method constitutes a possible approach to the continuous assimilation of seismic data volumes that often tend to grow exponentially.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-03
    Description: We present a novel full-waveform inversion (FWI) approach which can reduce the computational cost by up to an order of magnitude compared to conventional approaches, provided that variations in medium properties are sufficiently smooth. Our method is based on the usage of wavefield adapted meshes which accelerate the forward and adjoint wavefield simulations. By adapting the mesh to the expected complexity and smoothness of the wavefield, the number of elements needed to discretize the wave equation can be greatly reduced. This leads to spectral-element meshes which are optimally tailored to source locations and medium complexity. We demonstrate a workflow which opens up the possibility to use these meshes in FWI and show the computational advantages of the approach. We provide examples in 2-D and 3-D to illustrate the concept, describe how the new workflow deviates from the standard FWI workflow, and explain the additional steps in detail.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-21
    Description: We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically controlled by the desired quality of the gradient approximation. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive size ensures that an optimally small number of sources is used in each iteration, thus potentially leading to significant computational savings; (2) curvature information is accumulated and exploited during the inversion, using a randomized quasi-Newton method; (3) new data can be incorporated without the need to re-invert the complete data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate our method using synthetic and real-data inversions for upper-mantle structure beneath the African Plate. In these specific examples, the dynamic mini-batch approach requires around 20 per cent of the computational resources in order to achieve data and model misfits that are comparable to those achieved by a standard full-waveform inversion where all sources are used in each iteration.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-25
    Description: A new seismic model for crust and upper mantle of the south Central Andes is derived from full waveform inversion, covering the Pampean flat subduction and adjacent Payenia steep subduction segments. Focused crustal low‐velocity anomalies indicate partial melts in the Payenia segment along the volcanic arc, whereas weaker low‐velocity anomalies covering a wide zone in the Pampean segment are interpreted as remnant partial melts. Thinning and tearing of the flat Nazca slab is inferred from gaps in the slab along the inland projection of the Juan Fernandez Ridge. A high‐velocity anomaly in the mantle below the flat slab is interpreted as relic Nazca slab segment, which indicates an earlier slab break‐off triggered by the buoyancy of the Juan Fernandez Ridge during the flattening process. In Payenia, large‐scale low‐velocity anomalies atop and below the re‐steepened Nazca slab are associated with the re‐opening of the mantle wedge and sub‐slab asthenospheric flow, respectively.
    Description: Plain Language Summary: Taking advantage of the abundant information recorded in seismic waveforms, we imaged the seismic structure of the crust and upper mantle beneath central Chile and western Argentina, where the oceanic Nazca slab is subducting beneath the South American plate. The subducted Nazca slab is almost flat at a depth of 100–150 km in the north of the study area below the Pampean region, where the Juan Fernandez seamount ridge is subducting as part of the Nazca slab. The slab steepens again in the south in the Payenia region. Our model reveals pronounced low‐velocity anomalies within the Pampean flat slab along the inland projection of the Juan Fernandez Ridge, indicating that the Pampean flat slab is thinned or even torn apart. A high‐velocity anomaly is imaged beneath the flat slab, representing a former slab segment that was broken off during the slab flattening process and was overridden by the advancing young slab. Our model suggests a causal relationship between the oceanic ridge subduction and the flat slab formation. In the Payenia region, the slab re‐steepening resulted in the re‐establishment of the mantle wedge and induced hot mantle flow below the slab, which are characterized by low‐velocity anomalies in the model.
    Description: Key Points: A new seismic model for the crust and upper mantle beneath central Chile and western Argentina is presented. Thinning and tearing within the Pampean flat slab is detected along the inland projection of the Juan Fernandez Ridge. A relic slab is imaged beneath the Pampean flat slab, reflecting slab break‐off during the flattening process.
    Description: Freie Universität Berlin—China Scholarship Council
    Description: European Research Council
    Description: European Cooperation in Science and Technology (COST) http://dx.doi.org/10.13039/501100000921
    Description: Swiss National Supercomputing Center (CSCS)
    Keywords: ddc:551.1 ; ddc:622.1592
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...