ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉We investigate the lithospheric structure beneath the Gibraltar arc (western Mediterranean) using S-wave receiver functions (SRFs). From a dense network deployed in the Ibero-Maghrebian region during different seismic surveys, we calculated ∼11,000 SRFs that sample the upper mantle detecting the lithosphere-asthenosphere boundary (LAB). The observed seismic LAB belongs to different lithospheric domains: Iberian and African forelands, Alboran domain, and Atlantic Ocean. Common conversion point (CCP) migrated profiles show the geometrical relation among them. Under the Strait of Gibraltar, we observe a deep LAB (∼150 km). It can be associated with Jurassic-age lithosphere of ∼120 km thickness, one of the thickest ever reported in oceanic environments. There is an abrupt offset between the oceanic LAB and the shallow (80-km-deep) continental LAB of the Iberian foreland, suggesting displacement along a former transform fault. The northwestern African continental LAB is 90–100 km deep. The oceanic LAB under the Gibraltar arc continues to ∼180 km depth beneath the Alboran Sea, showing the connection between the Alboran slab and the oceanic lithosphere in the central Gulf of Cádiz. This geometry agrees with an ∼200-km-wide corridor of oceanic lithosphere between the central Atlantic and the Alpine Tethys, developed during the Middle–Late Jurassic. Our results support the proposed westward rollback of an oceanic east-dipping slab, which has continuity at least to the central Gulf of Cádiz.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2017-05-17
    Description: New seismic imaging and seismotectonic data from the southwest Iberian margin, the site of the present-day boundary between the European and African plates, reveal that active strike slip is occurring along two prominent lineaments that have recently been mapped using multibeam bathymetry. Multichannel seismic and subbottom profiler images acquired across the lineaments show seafloor displacements and active faulting to depths of at least 10 km and of a minimum length of 150 km. Seismic moment tensors show predominantly WNW–ESE right-lateral strike-slip motion, i.e., oblique to the direction of plate convergence. Estimates of earthquake source depths close to the fault planes indicate upper mantle (i.e., depths of 40–60 km) seismogenesis, implying the presence of old, thick, and brittle lithosphere. The estimated fault seismic parameters indicate that the faults are capable of generating great magnitude (Mw ≥ 8.0) earthquakes. Such large events raise the concomitant possibility of slope failures that have the potential to trigger tsunamis. Consequently, our findings identify an unreported earthquake and tsunami hazard for the Iberian and north African coastal areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: The Sierra Nevada Mountains in Southern Spain is one of the prominent features in the Western Mediterranean tectonic region. This mountain range with high topography (_ 3400 m) is located in the Central Betic Cordillera surrounded by Neogene-Quaternary sedimentary basins. We deployed 40 seismic broadband stations during one year in a North-South profile, to collect teleseismic events and perform a high-resolution P-to-S and S-to-P receiver function analysis. The spacing between stations, around 2km, allows mapping with high accuracy the variations of the crustal structure and the mantles discontinuities from the coast, through the mountain range to the near basin and test the hypothesis about the lack of crustal root underneath Sierra Nevada Mountains.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The Lorca 2011 seismic series was recorded by an unprecedented set of high quality on scale broadband seismograms and strong motion accelerograms. The waveforms from permanent and temporary broadband seismic networks deployed in the region by different institutions allowed to invert regional moment tensor for the fore, main and largest aftershock of the complete seismic sequence. Using double-difference algorithm we have performed a precise relocation of the seismic series, where body wave travel times from strong ground motion accelerograms were included in the data set. Regional moment tensor inversion for the three main events show similar oblique-reverse faulting regime with a northeast-southwest fault orientation. The scalar seismic moment, moment magnitude and focal depth retrieved from the inversion yield the following values for each event: Mo=6.5×1016 Nm (Mw = 5.2) for the mainshock, Mo=9.6×1015 Nm (Mw = 4.6) for the foreshock and Mo=7.3×1014 Nm (Mw = 3.9) for the large aftershock. The centroid depths range between 4 and 6 km. The double-difference relocation of the seismic series shows significant epicentral differences with the preliminary routine location. The epicentral solutions given by this relocation show a seismic sequence distributed following a NE–SW strike, subparallel to the Alhama de Murcia fault and compatible with the faulting parameters inverted from the moment tensor analysis. The hypocenters of the series generate a subvertical trend in depth distribution, being concentrated between 2 and 6 km. The depth distribution of the main events, which range from 4.6 to 5.5 km, is in good relationship with the faulting and depth parameters deduced from the moment tensor inversion technique. The regional moment tensor solutions for the three largest earthquakes, the epicentral distribution and the focal depths show good relationship with the surface geometry and tectonic regime of the Alhama de Murcia fault. The stress drop deduced for the mainshock gives a value ranging between 58 and 85 bars, which does not support the idea of a high stress drop release as a main factor contributing to the high ground acceleration recorded at Lorca. The PGA values observed at Lorca, which contributed to the high damage independently of structural deficiencies, could be generated mainly by shallowness and proximity to the seismic source together with a directivity effect in the seismic radiation.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique, ∼ NW–SE convergence between Africa and Eurasia at a rate of ∼ 5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin, ∼ 2 mm/yr in the Moroccan Atlas, and ∼ 2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as ∼ 2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the ∼ 3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: During the TopoIberia experiment, a total of 26 seismic broadband stations were recording in northern Morocco, providing for the first time extended regional coverage for investigating structure and seismotectonics of the southern branch of the Betic-Rif arc, its foreland, and the Atlas domain. Here, we analyze P-to-S converted waves in teleseismic receiver functions to infer gross crustal properties as thickness and Vp/Vs ratio. Strong lateral variations of the crustal thickness are observed throughout the region. Crustal thicknesses vary between 22 and 44 km and display a simple geographic pattern that divides the study area into three domains: entire northwestern Morocco underlain by a thickened crust with crustal thicknesses between 35 and 44 km; northeastern Morocco affected by significant crustal thinning, with crustal thicknesses ranging from 22 to 30 km, with the shallowest Moho along the Mediterranean coast; and an extended domain of 27–34 km thick crust, farther south which includes the Atlas domain and its foreland regions. Vp/Vs ratios show normal values of ∼1.75 for most stations except for the Atlas domain, where several stations give low Vp/Vs ratios of around 1.71. The very sharp transition from thick crust in northwestern Morocco to thin crust in northeastern Morocco is attributed to regional geodynamics, possibly the realm of present-day subcrustal dynamics in the final stage of western Mediterranean subduction. Crustal thicknesses just slightly above 30 km in the southern domain are intriguing, showing that high topography in this region is not isostatically compensated at crustal level.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: The present project is a joint effort between different institutions to deploy a dense seismic network at Gran Canaria island (Canary Islands, Spain). The interstation distance is around 20 km. The broadband seismic network is composed of one permanent (Guralp CMG-3T 120 s) and five temporary stations (Guralp CMG-3ESP 60 s). The permanent station is a 120 s Guralp CMG-3T and belongs to the Canary Island Seismic Network, run by the Instituto Geográfico Nacional (IGN) of Spain. The temporary stations are 60 s Guralp CMG-3ESP, provided by the GFZ seismic pool. The deployment was carried out in December 2009. The stations will be recording during two years. The improvement of the seismic network allow us to tackle the following issues: the detection and analysis of any local seismicity of tectonic and/or volcanic origin at Gran Canaria island; to contribute to the understanding of the regional seismicity with special interest in the oceanic channel between Tenerife and Gran Canaria Island in collaboration with a project running a dense temporary seismic network in Tenerife; to study the crustal and upper mantle structure, under Gran Canaria to constrain the crustal structure, the source of the volcanism, and better sample the mantle discontinuities and anisotropy. To study the Earth structure, we use receiver function analysis, ambient seismic noise and SKS anisotropy techniques, This project is part of a long-term research of the crustal and the mantle structure of the Canary Islands, which has started with Gran Canaria and Tenerife Islands and will eventually continue with the rest of the archipelago. The origin of the Canary Islands is generally attributed to a broad mantle upwelling under a slow moving plate, resulting in spatially and temporally distributed volcanic activity and a large number of seamounts and islands. A controversial discussion has been going on about the factors that control the evolution of the volcanic edifices, the type of the melting anomaly (a single, well defined mantle plume of a larger area of diffuse mantle upwelling), and the tectonic control of this evolution. This study is foreseen to provide important clues to understand the volcanic structure and tectonic evolution of the Gran Canaria Island.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-27
    Description: We investigate the lithospheric structure beneath the Gibraltar arc (western Mediterranean) using S-wave receiver functions (SRFs). From a dense network deployed in the Ibero-Maghrebian region during different seismic surveys, we calculated ~11,000 SRFs that sample the upper mantle detecting the lithosphere-asthenosphere boundary (LAB). The observed seismic LAB belongs to different lithospheric domains: Iberian and African forelands, Alboran domain, and Atlantic Ocean. Common conversion point (CCP) migrated pro-files show the geometrical relation among them. Under the Strait of Gibraltar, we observe a deep LAB (~150 km). It can be associated with Jurassic-age lithosphere of ~120 km thickness, one of the thick-est ever reported in oceanic environments. There is an abrupt offset between the oceanic LAB and the shallow (80-km-deep) continental LAB of the Iberian foreland, suggesting displacement along a former transform fault. The northwestern African continental LAB is 90–100 km deep. The oceanic LAB under the Gibraltar arc continues to ~180 km depth beneath the Alboran Sea, showing the connection between the Alboran slab and the oceanic lithosphere in the central Gulf of Cádiz. This geometry agrees with an ~200-km-wide corridor of oce-anic lithosphere between the central Atlantic and the Alpine Tethys, developed during the Middle–Late Jurassic. Our results support the proposed westward rollback of an oceanic east-dipping slab, which has continuity at least to the central Gulf of Cádiz
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...