ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-08
    Description: Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial radial propagation of the PDCs since it ignores azimuthal flows produced by real topographies that therefore need to be simulated in fully 3D conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-25
    Description: Starting from February 2021, Mt. Etna (Italy) experienced a period of intense explosive activity with 17 lava fountain episodes between 16 February and 1 April 2021. During the eruptive cycle, the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo (INGV-OE) issued 62 alert notifications known as VONAs (Volcano Observatory Notice for Aviation) to inform the aeronautical authorities about the volcanic activity. We present an automated VONA-based workflow aimed at real-time assessment of the volcanic hazard due to tephra fallout at Mt. Etna. When a VONA reporting tephra emission is issued by INGV-OE, numerical simulations accounting for atmospheric and eruptive uncertainties are automatically initialized to produce probabilistic hazard maps of tephra fallout and atmospheric dispersal. We applied the workflow to three lava fountains that occurred during the 2021 eruptive cycle. To test the modelling results, we compared the simulated ground load with field data, and the extent and position of the simulated volcanic cloud with the observed or estimated volcanic cloud from the Toulouse Volcanic Ash Advisory Center. Overall, we found a good match between simulated and observed quantities (tephra loads and volcanic cloud position), especially when accurate information on eruptive conditions (column height and duration) are supplied by the VONAs. Finally, through a statistical analysis, we found that column height and wind field are fundamental in determining tephra ground accumulation. For this reason, these parameters should be constrained by observational data as accurately as possible when performing numerical simulations, especially in the line of developing operational workflows.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-05
    Description: The use of structured expert judgment is highly relevant in contexts where epistemic and aleatoric uncertainties are significant. This is particularly important in probabilistic volcanic hazard assessments, where decisions based on uncertain information are often critical.In expert elicitations, participants are asked to provide their uncertainty judgments by suggesting their own 5th, 50th and 95th percentile estimates of numerical values in each question. An advantage of this approach when using numerical models for probabilistic volcanic hazard assessment is that it is possible to obtain probability density functions for each input parameter as well as constraining their uncertainty ranges. More specifically, performance-based elicitations start with “seed” questions for determining experts’ uncertainty quantification skill. The performance scores are thus used to define each expert’s weight to be applied when considering the judgments on the “target” questions, i.e., the actual variables of interest for the case study. In this presentation we describe a new Python tool (‘Elicipy’) which, with respect to existing tools, greatly simplifies the managing of performance-based expert elicitation sessions. This is achieved through the automatic generation of online webforms, which collect all the experts’ answers and check for their consistency, and the analysis using different weighting schemes (Classical Model as default, Equal Weight and others optionally). The workflow automatically produces greatly detailed outputs and assembles them into a powerpoint file available just after the collection of the answers. In this presentation the workflow, from the answer collection to the analysis, is applied to replicate a previous performance-based expert elicitation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-30
    Description: A modi_cation of the Kurganov, Noelle, Petrova central-upwind scheme [A. Kurganov et al., SIAM J. Sci. Comput., 23 (2001), pp. 707{740] for hyperbolic systems of conservation laws is presented. In this work, the numerical scheme is applied to a single-temperature model for compressible two-phase ow with pressure and velocity relaxations [E. Romenski et al., J. Sci. Comput., 42 (2010), pp. 68{95]. The system of governing equations of this model are expressed in conservative form, which is the necessary condition to use a central scheme. The numerical scheme presented is not based on the complete characteristic decomposition, but only on the information about the local speeds of propagation given by the maximum and minimum eigenvalue of the Jacobian of the uxes. We propose to use the numerical ux formulation of the central-upwind scheme in conjunction with a second-order reconstruction of the primitive variables and the MUSCL-Hancock method, where the boundary extrapolated values are evolved by half time step before the computation of the numerical uxes. To investigate the accuracy and robustness of the proposed scheme, two 1D Riemann-problems of an air/water mixture and a 2D shock-bubble-interaction problem are presented. Furthermore, a detailed comparison with the second order GFORCE scheme and the _rst order Lax-Friedrichs scheme is shown. To integrate the source terms an operator splitting approach is used and, under suitable conditions, it is shown that this integration can be computed analytically.
    Description: Published
    Description: B861–B880
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: High-resolution central schemes ; MUSCL-Hancock method ; theory of thermodynamically compatible system of conservation laws ; compressible two-phase ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We applied a new simulation model, based on multiphase transport laws, to describe the 4D (3D spatial coordinates plus time) dynamics of explosive eruptions. Numerical experiments, carried out on a parallel supercomputer, describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents (PDCs), for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius, Italy. Simulations provide crucial insights into the effects of the generation mechanism of the flows - partial collapse vs boiling-over - on their evolution and hazard potential, the unstable dynamics of the fountain, and the influence of Mount Somma on the propagation of PDCs into the circum-Vesuvian area, one of the world's most hazardous volcanic settings. Results also show that it is possible to characterize the volcanic column behavior in terms of percentage of the mass of pyroclasts collapsed to the ground and how this parameter strongly influences the dynamics and hazard of the associated PDCs.
    Description: Published
    Description: L04309
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: explosive eruption ; numerical modeling ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Typical unsteady unsaturated conditions can profoundly affect the hydrodynamics of vertical subsurface flow constructed wetlands. In this study we analyzed the hydrodynamics of a 33 m2 vertical flow pilot plant, treating municipal secondary effluents. Three different saturation conditions were analyzed under several constant flux regimes: complete saturation, partial saturation with the free water table 20 cm over the bottom of the bed, and complete drainage. Tracer tests were performed in steady state conditions by dosing rhodamine WT as square input signals. Breakthrough curves were analyzed by means of both a classical residence time distribution analysis and an originally developed numerical plug-flow model with longitudinal dispersion adapted to the unsaturated conditions. We found that the degree of global mixing in the vertical flow constructed wetland increased as the water content increased; this effect was controlled by the hydraulic residence time of the system. Conversely, the degree of local mixing was inversely affected by water content; the dispersivity was 4.5, 10, and 14 cm for fully saturated, partially saturated and draining conditions, respectively. We explain the dependency of dispersivity on water content in physical terms; however, further studies are needed to mathematically include this relationship in numerical models that describe the behaviour of vertical flow constructed wetlands.
    Description: Published
    Description: 265-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Constructed wetlands ; Vertical flow ; Hydrodynamics ; Tracer tests ; Rhodamine WT ; Modelling ; Unsaturated flow ; Dispersivity ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: This paper introduces a mathematical model (FITOVERT) specifically developed to simulate the behaviour of vertical subsurface flow constructed wetlands (VSSF-CWs). One of the main goals of the development of FITOVERT was to keep the complexity of the model to an acceptable level, so as to provide a practical tool for design and operation optimization. The dynamic formulation of the model allows to simulate the typical non stationary feeding-emptying operation of VSSF-CWs. FITOVERT is able to describe the water flow through porous media in unsaturated conditions, combined with evapotranspiration; its biochemical module describes the degradation of both organic matter and nitrogen; the transport in the liquid phase is implemented for both dissolved and particulate components; the oxygen transport in the gaseous phase of the soil and its exchange with the liquid phase are also considered. As a main advantage, compared to the few currently available dedicated numerical models, FITOVERT is able to handle the porosity reduction due to bacteria growth and accumulation of particulate components, so that the clogging process is also simulated as an effect of the pore size reduction on the hydraulic conductivity of the simulated system. The performance of the model was firstly analyzed by comparison with hydrodynamic tests recorded in an experimental VSSF-CW pilot plant: tracer test were carried out in three different saturation conditions (fully saturated, partially saturated, and completely drained). FITOVERT proved to accurately simulate the hydraulic behaviour of VSSF-CWs in both saturated and unsaturated conditions. The needs for model improvements and further calibration are finally discussed.
    Description: In press
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Constructed wetlands ; Hydrodynamics ; Modelling ; Reactive transport ; Vertical subsurface flow ; Unsaturated flow ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: An immersed boundary technique suitable for the solution of multiphase compressible equations of gas–particle flows of volcanic origin over complex 2D and 3D topographies has been developed and applied. This procedure combines and extends different existing methods designed for incompressible flows. Furthermore, the extension to compressible multiphase flows is achieved through a flux correction term in the mass continuity equations of the immersed cells that accounts for density variations in the partial volumes. The technique is computationally accurate and inexpensive, if compared to the use and implementation of the finite-volume technique on unstructured meshes. The first applications that we consider are the simulations of pyroclastic density currents generated by the collapse of a volcanic column in 2D axisymmetric geometry and by a dome explosion in 3D. Results show that the immersed boundary technique can significantly improve the description of the no-slip flow condition on an irregular topography even with relatively coarse meshes. Although the net effect of the present technique on the results is difficult to quantify in general terms, its adoption is recommended any time that cartesian grids are used to describe the large-scale dynamics of pyroclastic density currents over volcano topographies.
    Description: Published
    Description: 183-198
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic density currents ; Compressible flows ; Cartesian grids ; Finite-volume method ; Immersed boundary method ; Numerical simulation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Typical unsteady unsaturated conditions can profoundly affect the hydrodynamics of vertical subsurface flow constructed wetlands. In this study we analyzed the hydrodynamics of a 33m2 vertical flow pilot plant, treating municipal secondary effluents. Three different saturation conditions were analyzed under several constant flux regimes: complete saturation, partial saturation with the free water table 20cm over the bottom of the bed, and complete drainage. Tracer tests were performed in steady state conditions by dosing rhodamine WT as square input signals. Breakthrough curves were analyzed both by means of a classical residence time distribution analysis and an originally developed numerical plugflow model with longitudinal dispersion adapted to the unsaturated conditions. We found that the degree of global mixing in the vertical flow constructed wetland increased as the water content increased; this effect was controlled by the hydraulic residence time of the system. Conversely, the degree of local mixing was inversely affected by water content; the dispersivity was 4.5, 10, and 14cm for fully saturated, partially saturated and draining conditions, respectively. We explain the dependency of dispersivity on water content in physical terms, however, further studies are needed to mathematically include this relationship in numerical models that describe the behaviour of vertical flow constructed wetlands.
    Description: In press
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Constructed wetlands ; Vertical flow ; Hydrodynamics ; Tracer tests ; Rhodamine WT ; Modelling ; Unsaturated flow ; Dispersivity ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The evolution of lava flows emplaced on Mount Etna (Italy) in September 2004 is examined in detail through the analysis ofmorphometricmeasurements of flow units. The growth of the main channelized flow is consistent with a layering of lava blankets, which maintains the initial geometry of the channel (although levees are widened and raised), and is here explicitly related to the repeated overflow of lava pulses. A simple analytical model is introduced describing the evolution of the flow level in a channelized flow unit fed by a fluctuating supply. The model, named FLOWPULSE, shows that a fluctuation in the velocity of lava extrusion at the vent triggers the formation of pulses, which become increasingly high the farther they are from the vent, and are invariably destined to overflow within a given distance. The FLOWPULSE simulations are in accordance with the observed morphology, characterized by a very flat initial profile followed by a massive increase in flow unit cross-section area between 600 and 700 m downflow. The modeled emplacement dynamics provides also an explanation for the observed substantial “loss” of the original flowing mass with increasing distance from the vent.
    Description: Published
    Description: 801
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Lava flows . Emplacement dynamics . Lava flow modeling . Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...