ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: S 99.0139(389)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 389
    Type of Medium: Series available for loan
    Pages: xvii, 137 Seiten , Illustrationen, Diagramme, Karten
    ISBN: 978-3-7696-5319-9 , 9783769653199
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 389
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2023 , Contents List of Abbreviations xv 1 Introduction 1.1 Research Objectives 1.2 Outline and Structure of Thesis 2 Theoretical Background 2.1 Introduction 2.2 Glance at Landslide Hazards 2.2.1 Overview 2.2.2 Landslide Types 2.2.2.1 Type of Movement 2.2.2.2 Material Classification 2.2.2.3 Landslide Depth 2.2.3 Landslide Distribution 2.2.4 Landslide Implications and Measurements 2.2.5 Slow-moving Landslide 2.3 Landslide Remote Sensing 2.3.1 Overview 2.3.2 Airborne Remote Sensing 2.3.3 Spaceborne Remote Sensing 2.4 Spaceborne Optical Imagery 2.4.1 Overview 2.4.2 Pixel Offset Tracking (POT) 2.5 Spaceborne Radar Imagery 2.5.1 Synthetic Aperture Radar (SAR) Basic 2.5.1.1 SAR Geometry 2.5.1.2 SAR Acquisition Mode 2.5.1.3 SAR Distortion 2.5.1.4 SAR Mission 2.5.2 Interferometric SAR (InSAR) 2.5.2.1 Workflow of InSAR Processing 2.5.2.2 Coherence and Decorrelation 2.5.2.3 Topographic and Orbital Errors 2.5.2.4 Atmospheric Artifacts 2.5.2.5 Sensitivity of Line-of-sight (LOS) to Slope Motion 2.5.3 Advanced Multi-temporal InSAR (MT-InSAR) 2.5.3.1 Scattering Mechanism 2.5.3.2 Interferogram Stacking 2.5.3.3 Persistent Scatterer Interferometry (PSI) 2.5.3.4 Small Baseline Subsets (SBAS) 2.5.4 Corner Reflector InSAR (CR-InSAR) 2.5.4.1 Overview 2.5.4.2 Conventional Designs 2.5.4.3 Our Experimental Designs 2.5.4.4 CR-InSAR Processing 3 Methodological Contribution 3.1 Challenges in Landslide Monitoring Using Spaceborne Remote Sensing 3.2 Proposed Methodology 3.2.1 Analytically-based Modeling for Inverse Velocity 3.2.2 Identification of Small-scale CR-like Objectives 3.2.3 Modeling 4D Slope Instability Dynamics 4 Pre- and Co-failure: Slope Instability Monitoring Using Spaceborne Remote Sensing 4.1 Abstract 4.2 Introduction 4.3 Environmental and Geomorphological Settings 4.4 Data and Methodology 4.4.1 Remote Sensing Optical Images 4.4.2 MT-InSAR Analysis Using Sentinel-1 SAR Data 4.4.3 Auxiliary Data 4.4.4 Inverse-velocity Theory for Anticipating the Time of Failure 4.5 Results 4.5.1 Horizontal Displacement Based on High-resolution Optical Images 4.5.2 MT-InSAR Analysis 4.5.3 Influence of Precipitation on the Kinematics of the Landslide 4.5.4 INV Results for Anticipating the Time of Failure 4.5.5 Comparison of NDVI and Coherence Values 4.6 Discussion 4.7 Conclusion 4.8 Acknowledgements 4.9 Supplementary Materials 4.9.1 Comparison of River Courses 4.9.2 Detailed Parameters of Exploited SAR Data 4.9.3 Comparison of Baseline Graphs 5 Post-failure: Slope Instability Monitoring Using Artificial Corner Reflectors 5.1 Abstract 5.2 Introduction 5.3 Experiments and Methodology 5.3.1 Experimental Design 5.3.2 Selection Strategy for CRs 5.3.3 Radar Cross-section (RCS) 5.3.4 Signal-to-clutter Ratio (SCR) 5.3.5 CR-InSAR Processing 5.4 Results and Discussion 5.5 Conclusion 5.6 Acknowledgments 5.7 Supplementary Materials 5.7.1 Calculation of SCR 5.7.2 Selection Strategy 5.7.3 Radar Intensity Map 5.7.4 Site Photo of Interference Reflector 6 Post-failure: Characterizing 4D Slope Instability Dynamics 6.1 Abstract 6.2 Introduction 6.3 Geographical Setting of the Study Area 6.4 Methodology 6.4.1 Optical Images Processing 6.4.2 Multi-temporal InSAR Processing 6.4.3 Spatiotemporal Independent Component Analysis (ICA) of Displacement 6.4.4 Multi-sensor Integration Modeling 6.5 Results 6.5.1 Horizontal Deformation Based on Planet Images 6.5.2 MT-InSAR Results 6.5.3 Feature Extraction Using ICA 6.5.4 4D Deformation Modeling 6.6 Discussion 6.6.1 Early Post-failure Deformation from Planet 6.6.2 Post-failure Kinematics from MT-InSAR 6.6.3 ICA-based Spatiotemporal Features of Deformation 6.6.4 Resolving 4D Post-failure Kinematics 6.7 Conclusion 6.8 Acknowledgments 7 Summary and Future Perspectives 7.1 Summary 7.2 Future Perspectives List of Figures List of Tables Bibliography , Sprache der Kurzfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-10
    Print ISSN: 0957-4484
    Electronic ISSN: 1361-6528
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-09
    Print ISSN: 1468-6996
    Electronic ISSN: 1878-5514
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...