ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Neural computing & applications 3 (1995), S. 157-163 
    ISSN: 1433-3058
    Keywords: Asymptotic error convergence ; Lyapunov stability ; Neural controller ; Nonlinearities ; Robustness ; Uncertain dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract A neural networkbased robust adaptive tracking control scheme is proposed for a class of nonlinear systems. It is shown that, unlike most neural control schemes using the back-propagation training technique, one hidden layer neural controller is designed in the Lyapunov sense, and the parameters of the neural controller are then adaptively adjusted for the compensation of unknown dynamics and nonlinearities. Using this scheme, not only strong robustness with respect to unknown dynamics and nonlinearities can be obtained, but also asymptotic error convergence between the plant output and the reference model output can be guaranteed. A simulation example based on a one-link non-linear robotic manipulator is given in support of the proposed neural control scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 17 (1996), S. 371-386 
    ISSN: 1573-0409
    Keywords: stiding-mode control ; adaptive mechanism ; rigid robotic manipulator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, a robust adaptive sliding-mode control scheme for rigid robotic manipulators with arbitrary bounded input disturbances is proposed. It is shown that the prior knowledge on the upper bound of the norm of the input disturbance vector is not required in the sliding-mode controller design. An adaptive mechanism is introduced to estimate the upper bound of the norm of the input disturbance vector. The estimate is then used as a controller gain parameter to guarantee that the output tracking error asymptotically converges to zero and strong robustness with respect to bounded input disturbances can be obtained. A simulation example is given in support of the proposed control scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 21 (1998), S. 257-275 
    ISSN: 1573-0409
    Keywords: fuzzy basis function ; adaptive control ; nonlinear systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract An adaptive control using fuzzy basis function expansions is proposed for a class of nonlinear systems in this paper. It is shown that two system uncertainty bounds are approximated in a compact set by using fuzzy basis function expansion networks in the Lyapunov sense, and the outputs of the fuzzy networks are then used as the parameters of the controller to adaptively compensate for the effects of system uncertainties. Using this scheme, not only strong robustness with respect to unknown system dynamics and nonlinearities can be obtained, but also the output tracking error between the plant output and the desired reference output can be guaranteed to asymptotically converge to zero. Simulation results are provided to demonstrate the effectiveness, simplicity and practicality of the proposed control scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 24 (1999), S. 23-41 
    ISSN: 1573-0409
    Keywords: terminal sliding mode control ; adaptive control ; Lyapunov stability ; rigid robotic manipulators
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, a robust adaptive terminal sliding mode controller is developed for n-link rigid robotic manipulators with uncertain dynamics. An MIMO terminal sliding mode is defined for the error dynamics of a closed loop robot control system, and an adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties in the Lyapunov sense. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated and a finite time error convergence in the terminal sliding mode can be guaranteed. Also, a useful bounded property of the derivative of the inertial matrix is explored, the convergence rate of the terminal sliding variable vector is investigated, and an experiment using a five bar robotic manipulator is carried out in support of the proposed control scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...