ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2015-09-23
    Description: The combination of remote sensing and crop growth models has become an effective tool for yield estimation and a potential method for grain quality estimation. In this study, two assimilation variables (derived from a hyperspectral sensor), called leaf area index (LAI) and canopy nitrogen accumulation (CNA), were jointly used to calibrate the sensitive parameters and initial states of the DSSAT-CERES crop model, to improve simulated output of the grain yield and protein content of winter wheat. The results show that the modified simple ratio (MSR) and normalized difference red edge (NDRE) better estimated LAI and CNA, respectively, compared with the other possible vegetation indices. The integration of both LAI and CNA resulted in a more robust DSSAT-CERES models with than each one alone. The R2 and RMSE values, respectively, of the regression between the simulated (using the two assimilation variables method) and measured LAI were 0.828 and 0.494, and for CNA were 0.808 and 20.26 kg N∙ha−1. These two assimilation variables resulted in grain yield and protein content estimates of winter wheat with a high precision and R2 and RMSE values of 0.698 and 0.726 ton∙ha−1, and 0.758% and 1.16%, respectively. This study provides a more robust method for estimating the grain yield and protein content of winter wheat based on the integration of the DSSAT-CERES crop model and remote sensing data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-07
    Description: Leaf area index (LAI) and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ) and RADARSAT-2. The objectives of this study were (1) to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs) and radar polarimetric parameters (RPPs), (2) to estimate LAI and biomass with combined OSVIs and RPPs (the product of OSVIs and RPPs (COSVI-RPPs)), (3) to use multiple stepwise regression (MSR) and partial least squares regression (PLSR) to test and compare the estimations of LAI and biomass in winter wheat, respectively. The results showed that LAI and biomass were highly correlated with several OSVIs (the enhanced vegetation index (EVI) and modified triangular vegetation index 2 (MTVI2)) and RPPs (the radar vegetation index (RVI) and double-bounce eigenvalue relative difference (DERD)). The product of MTVI2 and DERD (R2 = 0.67 and RMSE = 0.68, p 〈 0.01) and that of MTVI2 and RVI (R2 = 0. 68 and RMSE = 0.65, p 〈 0.01) were strongly related to LAI, and the product of the optimized soil adjusted vegetation index (OSAVI) and DERD (R2 = 0.79 and RMSE = 148.65 g/m2, p 〈 0.01) and that of EVI and RVI (R2 = 0. 80 and RMSE = 146.33 g/m2, p 〈 0.01) were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat using multisource remote sensing data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-14
    Description: Remote Sensing, Vol. 10, Pages 1463: Remote Sensing of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model Remote Sensing doi: 10.3390/rs10091463 Authors: Zhenhai Li Xiuliang Jin Guijun Yang Jane Drummond Hao Yang Beth Clark Zhenhong Li Chunjiang Zhao Plant nitrogen (N) information has widely been estimated through empirical techniques using hyperspectral data. However, the physical model inversion approach on N spectral response has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on the N-based PROSPECT model and the SAIL model canopy model was constructed and used for retrieving crop N status both at leaf and canopy scales. The results show that the third parameter (3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the highest accuracy for LAI and LND estimation, which resulted in R2 and RMSE values of 0.80 and 0.69, and 0.46 and 21.18 µg·cm−2, respectively. It also showed good results with R2 and RMSE values of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g·m−2 for canopy N density (CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation index regression model (LNC: RMSE = 0.48 − 0.64%; CND: RMSE = 1.26 − 1.78 g·m−2). This study indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales in wheat.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-19
    Description: Remote Sensing, Vol. 10, Pages 1138: A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera Remote Sensing doi: 10.3390/rs10071138 Authors: Jibo Yue Haikuan Feng Xiuliang Jin Huanhuan Yuan Zhenhai Li Chengquan Zhou Guijun Yang Qingjiu Tian Timely and accurate estimates of crop parameters are crucial for agriculture management. Unmanned aerial vehicles (UAVs) carrying sophisticated cameras are very pertinent for this work because they can obtain remote-sensing images with higher temporal, spatial, and ground resolution than satellites. In this study, we evaluated (i) the performance of crop parameters estimates using a near-surface spectroscopy (350~2500 nm, 3 nm at 700 nm, 8.5 nm at 1400 nm, 6.5 nm at 2100 nm), a UAV-mounted snapshot hyperspectral sensor (450~950 nm, 8 nm at 532 nm) and a high-definition digital camera (Visible, R, G, B); (ii) the crop surface models (CSMs), RGB-based vegetation indices (VIs), hyperspectral-based VIs, and methods combined therefrom to make multi-temporal estimates of crop parameters and to map the parameters. The estimated leaf area index (LAI) and above-ground biomass (AGB) are obtained by using linear and exponential equations, random forest (RF) regression, and partial least squares regression (PLSR) to combine the UAV based spectral VIs and crop heights (from the CSMs). The results show that: (i) spectral VIs correlate strongly with LAI and AGB over single growing stages when crop height correlates positively with AGB over multiple growth stages; (ii) the correlation between the VIs multiplying crop height and AGB is greater than that between a single VI and crop height; (iii) the AGB estimate from the UAV-mounted snapshot hyperspectral sensor and high-definition digital camera is similar to the results from the ground spectrometer when using the combined methods (i.e., using VIs multiplying crop height, RF and PLSR to combine VIs and crop heights); and (iv) the spectral performance of the sensors is crucial in LAI estimates (the wheat LAI cannot be accurately estimated over multiple growing stages when using only crop height). The LAI estimates ranked from best to worst are ground spectrometer, UAV snapshot hyperspectral sensor, and UAV high-definition digital camera.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-28
    Description: A model for cyclic mechanical reinforcement Scientific Reports, Published online: 27 October 2016; doi:10.1038/srep35954
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-11
    Description: Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R670 only: R2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-23
    Description: Accurate yield estimation at the field scale is essential for the development of precision agriculture management, whereas at the district level it can provide valuable information for supply chain management. In this paper, Huan Jing (HJ) satellite HJ1A/B and Landsat 8 Operational Land Imager (OLI) images were employed to retrieve leaf area index (LAI) and canopy cover (CC) in the Yangling area (Central China). These variables were then assimilated into two crop models, Aquacrop and simple algorithm for yield (SAFY), in order to compare their performances and practicalities. Due to the models’ specificities and computational constraints, different assimilation methods were used. For SAFY, the ensemble Kalman filter (EnKF) was applied using LAI as the observed variable, while for Aquacrop, particle swarm optimization (PSO) was used, using canopy cover (CC). These techniques were applied and validated both at the field and at the district scale. In the field application, the lowest relative root-mean-square error (RRMSE) value of 18% was obtained using EnKF with SAFY. On a district scale, both methods were able to provide production estimates in agreement with data provided by the official statistical offices. From an operational point of view, SAFY with the EnKF method was more suitable than Aquacrop with PSO, in a data assimilation context.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-17
    Description: Leaf area index (LAI) is a key input in models describing biosphere processes and has widely been used in monitoring crop growth and in yield estimation. In this study, a hybrid inversion method is developed to estimate LAI values of winter oilseed rape during growth using high spatial resolution optical satellite data covering a test site located in southeast China. Based on PROSAIL (coupling of PROSPECT and SAIL) simulation datasets, nine vegetation indices (VIs) were analyzed to identify the optimal independent variables for estimating LAI values. The optimal VIs were selected using curve fitting methods and the random forest algorithm. Hybrid inversion models were then built to determine the relationships between optimal simulated VIs and LAI values (generated by the PROSAIL model) using modeling methods, including curve fitting, k-nearest neighbor (kNN), and random forest regression (RFR). Finally, the mapping and estimation of winter oilseed rape LAI using reflectance obtained from Pleiades-1A, WorldView-3, SPOT-6, and WorldView-2 were implemented using the inversion method and the LAI estimation accuracy was validated using ground-measured datasets acquired during the 2014–2015 growing season. Our study indicates that based on the estimation results derived from different datasets, RFR is the optimal modeling algorithm amidst curve fitting and kNN with R2 > 0.954 and RMSE 〈0.218. Using the optimal VIs, the remote sensing-based mapping of winter oilseed rape LAI yielded an accuracy of R2 = 0.520 and RMSE = 0.923 (RRMSE = 93.7%). These results have demonstrated the potential operational applicability of the hybrid method proposed in this study for the mapping and retrieval of winter oilseed rape LAI values at field scales using multi-source and high spatial resolution optical remote sensing datasets. Details provided by this high resolution mapping cannot be easily discerned at coarser mapping scales and over larger spatial extents that usually employ lower resolution satellite images. Our study therefore has significant implications for field crop monitoring at local scales, providing relevant data for agronomic practices and precision agriculture.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: The leaf area index (LAI) is a key parameter for describing crop canopy structure, and is of great importance for early nutrition diagnosis and breeding research. Light detection and ranging (LiDAR) is an active remote sensing technology that can detect the vertical distribution of a crop canopy. To quantitatively analyze the influence of the occlusion effect, three flights of multi-route high-density LiDAR dataset were acquired at two time points, using an Unmanned Aerial Vehicle (UAV)-mounted RIEGL VUX-1 laser scanner at an altitude of 15 m, to evaluate the validity of LAI estimation, in different layers, under different planting densities. The result revealed that normalized root-mean-square error (NRMSE) for the upper, middle, and lower layers were 10.8%, 12.4%, 42.8%, for 27,495 plants/ha, respectively. The relationship between the route direction and ridge direction was compared, and found that the direction of flight perpendicular to the maize planting ridge was better than that parallel to the maize planting ridge. The voxel-based method was used to invert the LAI, and we concluded that the optimal voxel size were concentrated on 0.040 m to 0.055 m, which was approximately 1.7 to 2.3 times of the average ground point distance. The detection of the occlusion effect in different layers under different planting densities, the relationship between the route and ridge directions, and the optimal voxel size could provide a guideline for UAV–LiDAR application in the crop canopy structure analysis.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-24
    Description: Remote Sensing, Vol. 10, Pages 1528: Quantitative Identification of Maize Lodging-Causing Feature Factors Using Unmanned Aerial Vehicle Images and a Nomogram Computation Remote Sensing doi: 10.3390/rs10101528 Authors: Liang Han Guijun Yang Haikuan Feng Chengquan Zhou Hao Yang Bo Xu Zhenhai Li Xiaodong Yang Maize (zee mays L.) is one of the most important grain crops in China. Lodging is a natural disaster that can cause significant yield losses and threaten food security. Lodging identification and analysis contributes to evaluate disaster losses and cultivates lodging-resistant maize varieties. In this study, we collected visible and multispectral images with an unmanned aerial vehicle (UAV), and introduce a comprehensive methodology and workflow to extract lodging features from UAV imagery. We use statistical methods to screen several potential feature factors (e.g., texture, canopy structure, spectral characteristics, and terrain), and construct two nomograms (i.e., Model-1 and Model-2) with better validation performance based on selected feature factors. Model-2 was superior to Model-1 in term of its discrimination ability, but had an over-fitting phenomenon when the predicted probability of lodging went from 0.2 to 0.4. The results show that the nomogram could not only predict the occurrence probability of lodging, but also explore the underlying association between maize lodging and the selected feature factors. Compared with spectral features, terrain features, texture features, canopy cover, and genetic background, canopy structural features were more conclusive in discriminating whether maize lodging occurs at the plot scale. Using nomogram analysis, we identified protective factors (i.e., normalized difference vegetation index, NDVI and canopy elevation relief ratio, CRR) and risk factors (i.e., Hcv1) related to maize lodging, and also found a problem of terrain spatial variability that is easily overlooked in lodging-resistant breeding trials.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...