ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-05-01
    Description: HIV-1 reverse transcriptase (RT), a critical enzyme of the HIV life cycle and an important drug target, undergoes complex and largely uncharacterized conformational rearrangements that underlie its asymmetric folding, dimerization and subunit-selective ribonuclease H domain (RH) proteolysis. In the present article we have used a combination of NMR spectroscopy, small angle X-ray scattering and X-ray crystallography to characterize the p51 and p66 monomers and the conformational maturation of the p66/p66' homodimer. The p66 monomer exists as a loosely structured molecule in which the fingers/palm/connection, thumb and RH substructures are connected by flexible (disordered) linking segments. The initially observed homodimer is asymmetric and includes two fully folded RH domains, while exhibiting other conformational features similar to that of the RT heterodimer. The RH' domain of the p66' subunit undergoes selective unfolding with time constant ~6.5 h, consistent with destabilization due to residue transfer to the polymerase' domain on the p66' subunit. A simultaneous increase in the intensity of resonances near the random coil positions is characterized by a similar time constant. Consistent with the residue transfer hypothesis, a construct of the isolated RH domain lacking the two N-terminal residues is shown to exhibit reduced stability. These results demonstrate that RH' unfolding is coupled to homodimer formation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-01
    Description: Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...