ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-24
    Description: We present results from a 90 ks Chandra ACIS-S observation of the X-ray luminous interacting galaxy system Arp 299 (NGC 3690/IC 694). We detect 25 discrete X-ray sources with luminosities above ~4.0 x 10 38 erg s –1 covering the entire Ultra Luminous X-ray source (ULX) regime. Based on the hard X-ray spectra of the non-nuclear discrete sources identified in Arp 299, and their association with young, actively star-forming region of Arp 299 we identify them as HMXBs. We find in total 20 off-nuclear sources with luminosities above the ULX limit, 14 of which are point-like sources. Furthermore we observe a marginally significant deficit in the number of ULXs, with respect to the number expected from scaling relations of X-ray binaries with the star formation rate (SFR). Although the high metallicity of the galaxy could result in lower ULX numbers, the good agreement between the observed total X-ray luminosity of ULXs, and that expected from the relevant scaling relation indicates that this deficit could be the result of confusion effects. The integrated spectrum of the galaxy shows the presence of a hot gaseous component with kT = 0.72 ± 0.03 keV, contributing ~20 per cent of the soft (0.1-2.0 keV) unabsorbed luminosity of the galaxy. A plume of soft X-ray emission in the west of the galaxy indicates a large scale outflow. We find that the AGN in NGC 3690 contributes only 22 per cent of the observed broad-band X-ray luminosity of Arp 299.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-14
    Description: We present the first of a series of studies of the evolution of galaxies in compact groups over the past 3 Gyr. This article focuses on the evolution of nuclear activity and how it has been affected by the dense environment of the groups. Our analysis is based on the largest multiwavelength compact-group sample to date, containing complete ultraviolet–infrared (UV–IR) photometry for 1770 isolated groups (7417 galaxies). We classified the nuclear activity of the galaxies based on optical emission-line and mid-infrared (mid-IR) diagnostic methods, as well as using spectral energy distribution fitting. We observe a 15 per cent increase in the number of active galactic nucleus (AGN)-hosting late-type galaxies found in dynamically old groups over the past 3 Gyr, accompanied by a corresponding decrease in their circumnuclear star formation. Comparing our compact group results with those for local isolated field and interacting pair galaxies, we find no differences in the AGNs at the same redshift range. Based on both optical and mid-IR colour classifications, we report the absence of Seyfert 1 nuclei and attribute this to the low accretion rates caused by depletion of gas. We propose that the observed increase in low-ionization nuclear emission-line regions (LINERs) and Seyfert 2 nuclei (at low z ) in early-type galaxies of dynamically young groups is due to the morphological transformation of lenticular galaxies into elliptical ones. Finally, we show that, at any given stellar mass, galaxies found in dynamically old groups are more likely to host an AGN. Our findings suggest that depletion of gas due to past star formation and tidal stripping is the major mechanism driving the evolution of nuclear activity in compact groups of galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-07
    Description: We present the results of a joint Swift -NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6–8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM–Newton . We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-22
    Description: We present the results from the analysis of the broad-band X-ray spectra of five anomalous X-ray pulsars (AXPs) and soft -ray repeaters (SGRs). We fit their Suzaku and INTEGRAL spectra with models appropriate for the X-ray emission from the accretion flow on to a pulsar. We find that their X-ray spectra can be well described with this model. In particular, we find that (a) the radius of the accretion column is ~150–350 m resulting in a transverse optical depth of ~1, (b) the vertical Thompson optical depth is 50–400, and (c) their luminosity translates in accretion rates 10 15 g s – 1 . These results are in good agreement with the predictions from the fall-back disc model, providing further support in the interpretation of AXPs and SGRs as accreting pulsars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-21
    Description: We have discovered a persistent, but highly variable X-ray source in the nearby starburst galaxy NGC 253. The source varies at the level of a factor of about 5 in count rate on time-scales of a few hours. Two long observations of the source with Chandra and XMM – Newton show suggestive evidence for the source having a period of about 14–15 hours, but the time sampling in existing data is insufficient to allow a firm determination that the source is periodic. Given the amplitude of variation and the location in a nuclear starburst, the source is likely to be a Wolf–Rayet X-ray binary, with the tentative period being the orbital period of the system. In light of the fact that we have demonstrated that careful examination of the variability of moderately bright X-ray sources in nearby galaxies can turn up candidate Wolf–Rayet X-ray binaries, we discuss the implications of Wolf–Rayet X-ray binaries for predictions of the gravitational wave source event rate, and, potentially, interpretations of the events.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-12
    Description: We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disc had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L X  ~ 10 33 erg s –1 . This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT  = 1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-15
    Description: The Small Magellanic Cloud (SMC) is well known to harbour a large number of high-mass X-ray binaries (HMXBs). The identification of their optical counterparts provides information on the nature of the donor stars and can help to constrain the parameters of these systems and their evolution. We obtained optical spectra for a number of HMXBs identified in previous Chandra and XMM–Newton surveys of the SMC using the AAOmega/2dF fibre-fed spectrograph at the Anglo-Australian Telescope. We find five new Be/X-ray binaries (BeXRBs; including a tentative one), by identifying the spectral type of their optical counterparts, and we confirm the spectral classification of an additional 15 known BeXRBs. We compared the spectral types, orbital periods and eccentricities of the BeXRB populations in the SMC and the Milky Way and we find marginal evidence for difference between the spectral type distributions, but no statistically significant differences for the orbital periods and the eccentricities. Moreover, our search revealed that the well-known supergiant B[e] star LHA 115-S 18 (or AzV 154) is associated with the weak X-ray source CXOU J005409.57–724143.5. We provide evidence that the supergiant star LHA 115-S 18 is the optical counterpart of the X-ray source, and we discuss different possibilities of the origin of its low X-ray luminosity ( L x  ~ 4 10 33 erg s –1 ).
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-16
    Description: The total infrared (IR) luminosity is very useful for estimating the star formation rate (SFR) of galaxies, but converting the IR luminosity into an SFR relies on assumptions that do not hold for all galaxies. We test the effectiveness of the IR luminosity as an SFR indicator by applying it to synthetic spectral energy distributions generated from three-dimensional hydrodynamical simulations of isolated disc galaxies and galaxy mergers. In general, the SFR inferred from the IR luminosity agrees well with the true instantaneous SFR of the simulated galaxies. However, for the major mergers in which a strong starburst is induced, the SFR inferred from the IR luminosity can overestimate the instantaneous SFR during the post-starburst phase by greater than two orders of magnitude. Even though the instantaneous SFR decreases rapidly after the starburst, the stars that were formed in the starburst can remain dust-obscured and thus produce significant IR luminosity. Consequently, use of the IR luminosity as an SFR indicator may cause one to conclude that post-starburst galaxies are still star forming, whereas in reality, star formation was recently quenched.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-17
    Description: In this work we investigate the link between high-mass X-ray binaries (HMXBs) and star formation in the Large Magellanic Cloud (LMC), our nearest star-forming galaxy. Using optical photometric data, we identify the most likely counterpart of 44 X-ray sources. Among the 40 HMXBs classified in this work, we find 33 Be/X-ray binaries (Be-XRBs), and 4 supergiant XRBs. Using this census and the published spatially resolved star formation history map of the LMC, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star formation bursts ~6–25 Myr ago, in contrast to the Small Magellanic Cloud (SMC), for which this population peaks at later ages (~25–60 Myr ago). We also estimate the HMXB production rate to be equal to one system per ${\sim }23.0_{-4.1}^{+4.4}\times 10^{-3}$  M yr – 1  or one system per ~143M  of stars formed during the associated star formation episode. Therefore, the formation efficiency of HMXBs in the LMC is ~17 times lower than that in the SMC. We attribute this difference primarily in the different ages and metallicity of the HMXB populations in the two galaxies. We also set limits on the kicks imparted on the neutron star during the supernova explosion. We find that the time elapsed since the supernova kick is ~3 times shorter in the LMC than the SMC. This in combination with the average offsets of the HMXBs from their nearest star clusters results in ~4 times faster transverse velocities for HMXBs in the LMC than in the SMC.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-21
    Description: We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multiwavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01 〈 z 〈 0.23. To derive the physical properties of the galaxies, we rely on ultraviolet (UV)-to-infrared spectral energy distribution modelling, using cigale . Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3 to 10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colours are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals to early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...