ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A method of seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure is presented that is applicable to any type of body-wave seismic data. The advantage of inversion, as opposed to trial-and-error forward modelling, is that it provides estimates of model parameter resolution, uncertainty and non-uniqueness, and an assurance that the data have been fit according to a specified norm. In addition, the time required to interpret data is significantly reduced. The inversion scheme is iterative and is based on a model parametrization and a method of ray tracing suited to the forward step of an inverse approach. The number and position of velocity and boundary nodes can be adapted to the shot-receiver geometry and subsurface ray coverage, and to the complexity of the near-surface. The model parametrization also allows ancillary amplitude information to be used to constrain model features not adequately resolved by the traveltime data alone. The method of ray tracing uses an efficient numerical solution of the ray tracing equations, an automatic determination of take-off angles, and a simulation of smooth layer boundaries that yields more stable inversion results. The partial derivatives of traveltime with respect to velocity and the depth of boundary nodes are calculated analytically during ray tracing and a damped least-squares technique is used to determine the updated parameter values, both velocities and boundary depths simultaneously. The stopping criteria and optimum number of velocity and boundary nodes are based on the trade-off between RMS traveltime residual and parameter resolution, as well as the ability to trace rays to all observations. Methods for estimating spatial resolution and absolute parameter uncertainty are presented. An example using synthetic data demonstrates the algorithm's accuracy, rapid convergence and sensitivity to realistic noise levels. An inversion of refraction and wide-angle reflection traveltimes from the 1986 IRISPASSCAL Nevada, USA (Basin and Range province) seismic experiment illustrates the methodology and practical considerations necessary for handling real data. A comparison of our final 2-D velocity model with results from studies using other 1-D and 2-D forward and inverse methods serves as a check on the validity of the inversion scheme and provides estimates of parameter uncertainties that account for the bias introduced by the modelling approach and the interpreter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-18
    Description: Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-10
    Description: Traveltime tomography is the main method by which the Earth's seismic velocity is determined on all scales, from the near-surface (〈100 m) to the core. Usually traveltime tomography uses ray theory, an infinite-frequency approximation of wave propagation. A theory developed in global seismology to account for the finite-frequency nature of seismic data, known as finite-frequency traveltime tomography (FFTT), can theoretically provide a more accurate estimation of velocity. But the FFTT theory is generally not applicable to near-surface data because there is no reference velocity model known in advance that is capable of yielding synthetic waveforms that are close enough to the recorded seismograms to yield a reliable delay time. Also, there is usually no reference model for which the unknown velocity model represents a small (linear) perturbation from the reference model. This paper presents a frequency dependent form of non-linear traveltime tomography specifically designed for near-surface seismic data in which a starting model, iterative approach with recalculated travel paths at each iteration, and the calculation of a frequency-dependent total traveltime, as opposed to a delay time, are used. Frequency-dependent traveltime tomography (FDTT) involves two modifications to conventional traveltime tomography: (1) the calculation of frequency-dependent traveltimes using wavelength-dependent velocity smoothing (WDVS) and (2) the corresponding sensitivity kernels that arise from using WDVS. Results show that the former modification is essential to achieve significant benefits from FDTT, whereas the latter is optional in that similar results can be achieved using infinite-frequency kernels. The long seismic wavelengths relative to the total path lengths and the size of subsurface heterogeneities of typical near-surface data means the improvements over ray theory tomography are significant. The benefits of FDTT are demonstrated using conventional minimum-structure regularization techniques to address the issue of model non-uniqueness. For synthetic data, the estimated FDTT models are shown to be more accurate than the corresponding infinite-frequency-derived models. Both 2-D and 3-D applications of FDTT to real data from a near-surface study yield estimated models that contain more structure than the corresponding infinite-frequency-derived models. Applications of FDTT without regularization demonstrate the potential of the WDVS-derived sensitivity kernels to provide a natural smoothing of the velocity model and thereby allow the data alone to determine the final model structure.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-24
    Description: The size, frequency, and intensity of volcanic eruptions are strongly controlled by the volume and connectivity of magma within the crust. Several geophysical and geochemical studies have produced a comprehensive model of the magmatic system to depths near 7 km beneath Mount St. Helens (Washington State, USA), currently the most active volcano in the Cascade Range. Data limitations have precluded imaging below this depth to observe the entire primary shallow magma reservoir, as well as its connection to deeper zones of magma accumulation in the crust. The inversion of P and S wave traveltime data collected during the active-source component of the iMUSH (Imaging Magma Under St. Helens) project reveals a high P-wave (Vp)/S-wave (Vs) velocity anomaly beneath Mount St. Helens between depths of 4 and 13 km, which we interpret as the primary upper–middle crustal magma reservoir. Beneath and southeast of this shallow reservoir, a low Vp velocity column extends from 15 km depth to the Moho. Deep long-period events near the boundary of this column indicate that this anomaly is associated with the injection of magmatic fluids. Southeast of Mount St. Helens, an upper–middle crustal high Vp/Vs body beneath the Indian Heaven Volcanic Field may also have a magmatic origin. Both of these high Vp/Vs bodies are at the boundaries of the low Vp middle–lower crustal column and both are directly above high Vp middle–lower crustal regions that may represent cumulates associated with recent Quaternary or Paleogene–Neogene Cascade magmatism. Seismicity immediately following the 18 May 1980 eruption terminates near the top of the inferred middle–lower crustal cumulates and directly adjacent to the inferred middle–lower crustal magma reservoir. These spatial relationships suggest that the boundaries of these high-density cumulates play an important role in both vertical and lateral transport of magma through the crust.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-19
    Description: We present a synthetic test that uses a workflow consisting of a new frequency-dependent traveltime tomography (FDTT) method to provide a starting model for full waveform inversion (FWI) for near-surface seismic velocity estimation from refraction data. Commonly used ray-theory-based traveltime tomography methods may not be valid in the near surface given the likelihood of relatively large seismic wavelengths compared to the length scales of heterogeneities that are possible in the near surface. FDTT makes use of the frequency content in the seismic waves in both the forward and inverse modeling steps. In this application to a near-surface benchmark model, the results show that FDTT can better recover the magnitude of velocity anomalies than infinite frequency (ray-theory) traveltime tomography (IFTT). FWI can fail by converging to a local minimum when there is an absence of sufficiently low frequency data and an accurate starting model, either of which, if present, can provide long-wavelength constraints on the inverted velocity model. Both IFTT and FDTT models can serve as adequate starting models for FWI. However, FWI produces significantly better results starting from the FDTT model as compared to the IFTT model when low frequency data are not available. The final FWI models provide wavelength-scale structures allowing for direct geologic interpretation from the velocity model itself, demonstrating the effectiveness of FDTT and FWI in near-surface studies given the modest experiment and data requirements of refraction surveys.
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-09
    Description: Ray theory-based traveltime calculation that assumes infinitely high frequency wave propagation is likely to be invalid in the near-surface (upper tens of meters) due to the relatively large seismic wavelength compared with the total travel path lengths and the scale of the near-surface velocity heterogeneities. The wavelength-dependent velocity smoothing (WDVS) algorithm calculates a frequency-dependent, first-arrival traveltime by assuming that using a wavelength-smoothed velocity model and conventional ray theory is equivalent to using the original unsmoothed model and a frequency-dependent calculation. This paper presents comparisons of WDVS-calculated traveltimes with band-limited full wavefield synthetics including the results from 1) different velocity models, 2) different frequency spectra, 3) different values of a free parameter in the WDVS algorithm, and 4) different levels of added noise to the synthetics. The results show that WDVS calculates frequency-dependent traveltimes that are generally consistent with the first arrivals from band-limited full wavefield synthetics. Compared to infinite-frequency traveltimes calculated using conventional ray theory, the WDVS frequency-dependent traveltimes are more consistent with the first arrivals picked from full wavefield synthetics in terms of absolute time and trace-to-trace variation. The results support the use of WDVS as the forward modeling component of a tomographic inversion method, or any seismic method that involves modeling first-arrival traveltimes.
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-06-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1995-06-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...