ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2020-10-13
    Description: A high-resolution (1 km line spacing) aerogeophysical survey was conducted over a region near the East Antarctic Ice Sheet’s Dome C that may hold a 1.5 Myr climate record. We combined new ice thickness data derived from an airborne coherent radar sounder with unpublished data that was in part unavailable for earlier compilations, and we were able to remove older data with high positional uncertainties. We generated a revised high-resolution digital elevation model (DEM) to investigate the potential for an old ice record in this region, and used laser altimetry to confirm a Cryosat-2 derived DEM for inferring the glaciological state of the candidate area. By measuring the specularity content of the bed, we were able to find an additional 50 subglacial lakes near the candidate site, and by Doppler focusing the radar data, we were able to map out the roughness of the bed at length scales of hundreds of meters. We find that the primary candidate region contains elevated rough topography interspersed with scattered subglacial lakes and some regions of smoother bed. Free subglacial water appears to be restricted from bed overlain by ice thicknesses of less than 3000 m. A site near the ice divide was selected for further investigation. The high resolution of this ice thickness data set also allows us to explore the nature of ice thickness uncertainties in the context of radar geometry and processing.
    Description: Published
    Description: 1897-1911
    Description: 5A. Paleoclima e ricerche polari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-21
    Description: To resolve the mechanisms behind the major climate reorganisation which occurred between 0.9 and 1.2 Ma, the recovery of a suitable 1.5 million-year-old ice core is fundamental. The quest for such an Oldest Ice core requires a number of key boundary conditions, of which the poorly known basal geothermal heat flux (GHF) is lacking. We use a transient thermodynamical 1D vertical model that solves for the rate of change of temperature in the vertical, with surface temperature and modelled GHF as boundary conditions. For each point on the ice sheet, the model is forced with variations in atmospheric conditions over the last 2 Ma, and modelled ice-thickness variations. The process is repeated for a range of GHF values to determine the value of GHF that marks the limit between frozen and melting conditions over the whole ice sheet, taking into account 2 Ma of climate history. These threshold values of GHF are statistically compared to existing GHF data sets. The new probabilistic GHF fields obtained for the ice sheet thus provide the missing boundary conditions in the search for Oldest Ice. High spatial resolution radar data are examined locally in the Dome Fuji and Dome C regions, as these represent the ice core community’s primary drilling sites. GHF, bedrock variability, ice thickness and other essential criteria combined highlight a dozen major potential Oldest Ice sites in the vicinity of Dome Fuji and Dome C, where GHF allows for Oldest Ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-12
    Description: ‘AntArchitecture’ is a new Action Group of the Scientific Committee for Antarctic Research that aims for the first time to determine the stability of the Antarctic ice sheets over past glacial cycles directly from the internal architecture of the ice. Internal architecture describes the 3D internal structure of the ice imaged by multiple radarâ-sounding surveys undertaken across Antarctica over the last five decades. AntArchitecture aspires to bring together the key datasets on Antarctic Ice Sheet internal layering from the principal institutions and scientists who have been responsible for acquiring, processing and storing them over the last four decades. Key activities include coordinating data-transfer and data-lodging exercises between institutions/countries that will allow datasets acquired by different radar systems to be combined for pan-ontinental analysis, and the development of an optimized processing flow for analysis of past data and advice on where future data acquisition needs to be targeted. An expanded outline of AntArchitecture and its timeline of activities can be accessed here: https://www.scar.org/science/antarchitecture/about/ This presentation provides a status report of activities and achievement of AntArchitecture to July 2019.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-11
    Description: The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-17
    Description: A high-resolution (1 km line spacing) aerogeophysical survey was conducted over a region near the East Antarctic Ice Sheet's Dome C that may hold a 1.5 Myr climate record. We combined new ice thickness data derived from an airborne coherent radar sounder with unpublished data that was in part unavailable for earlier compilations, and we were able to remove older data with high positional uncertainties. We generated a revised high-resolution digital elevation model (DEM) to investigate the potential for an old ice record in this region, and used laser altimetry to confirm a Cryosat-2 derived DEM for inferring the glaciological state of the candidate area. By measuring the specularity content of the bed, we were able to find an additional 50 subglacial lakes near the candidate site, and by Doppler focusing the radar data, we were able to map out the roughness of the bed at length scales of hundreds of meters. We find that the primary candidate region contains elevated rough topography interspersed with scattered subglacial lakes and some regions of smoother bed. Free subglacial water appears to be restricted from bed overlain by ice thicknesses of less than 3000 m. A site near the ice divide was selected for further investigation. The high resolution of this ice thickness data set also allows us to explore the nature of ice thickness uncertainties in the context of radar geometry and processing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-17
    Description: Gravity anomalies provide a tool to study crustal structure, effective elastic thickness, and isostatic and tectonic processes. Over the last 10 years major airborne gravity surveys were flown by the international community over several Antarctic frontiers. The longer-wavelength Antarctic gravity anomaly field is increasingly better resolved with satellite-gravity. These recent airborne and satellite gravity datasets provide novel perspectives on Antarctic crustal structure and geodynamic evolution. We review results from some of these surveys over the Gamburtsev Subglacial Mountains, Dronning Maud Land, the Wilkes Subglacial Basin, the Transantarctic Mountains and the West Antarctic Rift System and present gravity modelling outputs of crustal thickness for these regions. We contrast these gravity results with a seismically-derived estimation of Antarctic crustal thickness (Baranov and Morelli, 2013, Tectonophys). Anomalously thick East Antarctic crust lies beneath the Gamburtsev Mountains and parts of Dronning Maud Land (50-58 km). Crustal thickening may stem from the collision of a mosaic of East Antarctic crustal provinces in Meso to Neoproterozoic times (Ferraccioli et al., 2011, Nature), or during younger Edicaran to early Cambrian “Pan-African age” orogenic events. The preservation of such thick crust provides significant support for the high bedrock topography in East Antarctica. Additional flexural uplift along the flanks of the Permian to Cretaceous East Antarctic Rift System helps explain the enigmatic Gamburtsev Mountains. Lithospheric flexure along the flank of the West Antarctic Rift System (WARS) may explain the Transantarctic Mountains (TAM), the longest and highest non-compressional mountain range on Earth. Whether the Wilkes Subglacial Basin also developed in response to lithospheric flexure is debated. Our gravity models image thicker crust beneath the Transantarctic Mountains (TAM) (ca 40 km thick), compared to the relatively thinner crust (30-35 km) beneath the Wilkes Subglacial Basin (Jordan et al., 2013 Tectonophys); this is difficult to reconcile with previous flexural model predictions. Three geodynamic processes could explain the thicker crust beneath the TAM: i) Cambrian-Ordovician subduction and accretion along the East Antarctic craton margin; ii) formation of a Paleozoic to Mesozoic plateau in West Antarctica that collapsed leaving behind a region of thicker crust; iii) extensive Jurassic magmatic underplating related to Gondwana break-up. Gravity modelling helps trace the WARS beneath the West Antarctic Ice Sheet (WAIS). The interior Ross Sea Embayment features 25-28 km-thick crust, while parts of the Amundsen Sea Embayment (ASE) are underlain by 19-23 km-thick crust. Narrow Cenozoic rifts may be interspersed with regions of more distributed Cretaceous extension, explaining the anomalously thin crust and lower Te values beneath the ASE. Major contrasts within the WARS are relevant also for the WAIS as these likely exert a key influence on geothermal heat flux variations, which in turn influence basal melting and ice motion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-20
    Description: To resolve the mechanisms behind the major climate reorganisation which occurred between 0.9 and 1.2Ma, the recovery of a suitable 1.5 million-year-old ice core is fundamental. The quest for such an Oldest Ice core requires a number of key boundary conditions, of which the poorly known basal geothermal heat flux (GHF) is lacking. We use a transient thermodynamical 1D vertical model that solves for the rate of change of temperature in the vertical, with surface temperature and modelled GHF as boundary conditions. For each point on the ice sheet, the model is forced with variations in atmospheric conditions over the last 2Ma, and modelled ice-thickness variations. The process is repeated for a range of GHF values to determine the value of GHF that marks the limit between frozen and melting conditions over the whole ice sheet, taking into account 2Ma of climate history. These threshold values of GHF are statistically compared to existing GHF data sets. The new probabilistic GHF fields obtained for the ice sheet thus provide the missing boundary conditions in the search for Oldest Ice. High spatial resolution radar data are examined locally in the Dome Fuji and Dome C regions, as these represent the ice core community's primary drilling sites. GHF, bedrock variability, ice thickness and other essential criteria combined highlight a dozen major potential Oldest Ice sites in the vicinity of Dome Fuji and Dome C, where GHF allows for Oldest Ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-17
    Description: We present a compilation of radio-echo sounding (RES) measurements of five radar systems (AWI, BAS, CReSIS, INGV and UTIG) around the EPICA Dome C (EDC) drill site, East Antarctica. The aim of our study is to investigate the differences of the various systems in their resolution of internal reflection horizons (IRHs) and bed topography, penetration depth, and capacity of imaging the basal layer.We address the questions of the compatibility of existing radar data for common interpretation, and the suitability of the individual systems for reconnaissance surveys. We find that the most distinct IRHs and IRH patterns can be identified and transferred between most data sets. Considerable differences between the RES systems exist in range resolution and depiction of the bottom-most region. Considering both aspects, which we judge as crucial factors in the search for old ice, the CReSIS and the UTIG systems are the most suitable ones. In addition to the RES data set comparison we calculate a synthetic radar trace from EDC density and conductivity profiles. We identify ten common IRHs in the measured RES data and the synthetic trace. Then we conduct a sensitivity study for which we remove certain peaks from the input conductivity profile. As a result the respective reflections disappear from the modeled radar trace. In this way, we establish a depth conversion of the measured travel-times of the IRHs. Furthermore, we use these sensitivity studies to investigate the cause of observed reflections. The identified IRHs are assigned ages from the EDC’s time scale. Due to the isochronous character of these conductivity-caused IRHs, they are a means to extend the Dome C age structure by tracing the IRHs along the RES profiles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-09
    Description: We present a compilation of radio-echo sounding (RES) measurements of five radar systems (AWI, BAS, CReSIS, INGV and UTIG) around the EPICA Dome C (EDC) drill site, East Antarctica. The aim of our study is to investigate the differences of the various systems in their resolution of internal reflection horizons (IRHs) and bedrock topography, penetration depth, and quality of imaging the basal layer. We address the questions of the compatibility of existing radar data for common interpretation, and the 5 suitability of the individual systems for Oldest Ice reconnaissance surveys.We find that the most distinct IRHs and IRH patterns can be identified and transferred between most data sets. Considerable differences between the RES systems exist in range resolution and depiction of the basal layer. Considering both aspects, which we judge as crucial factors in the search for old ice, the CReSIS and the UTIG systems are the most valuable ones. In addition to the RES data set comparison we calculate a synthetic radar trace from EDC density and conductivity profiles.We identify ten common IRHs in the measured 10 RES data and the synthetic trace. The reflection-causing conductivity sections are determined by sensitivity studies with the synthetic trace. In this way, we accomplish an accurate two-way travel time to depth conversion for the reflectors, without having to use a precise velocity-depth function that would accumulate depth uncertainties with increasing depth. The identified IRHs are assigned with the AICC2012 time scale age. Due to the isochronous character of these conductivity-caused IRHs, they are a means to extend the Dome C age structure by tracing the IRHs along the RES profiles.
    Description: Published
    Description: 653-668
    Description: 5A. Paleoclima e ricerche polari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...