ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-07-13
    Description: A glassy dilute glycerol-water solution undergoes a mutual polyamorphic transition relating to the transition between high- and low-density amorphous ices of solvent water. The polyamorphic transition behavior depends on the glycerol concentration, indicating that the glycerol affects the water polyamorphism. Here, we used the glassy dilute glycerol-water solution of the solute molar fraction of 0.07 and examined the effect of the polyamorphic change in solvent water on the molecular vibrations of glycerol via Raman spectroscopy. It is found that the molecular vibration of glycerol in high-density liquid like solvent water is different from that in the low-density liquid like solvent water and that the change in the molecular vibration of glycerol is synchronized with the polyamorphic transition of solvent water. The dynamical change of the solute molecule relates to the polyamorphic state of solvent water. This result suggests that the polyamorphic fluctuation of water structure emanated from the presumed liquid-liquid critical point plays an important role for the function of aqueous solution under an ambient condition such as the conformational stability of solute, the functional expression of solute, and so on.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-06
    Description: The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization of liquid water in the “no-man's land.” Here, we observed experimentally the pressure-induced polyamorphic transition in the dilute glycerol-water solution which relates to the water polyamorphism. We examined the effect of the glycerol concentration on the liquid-liquid transition, and found its LLCP around 0.12–0.15 mole fraction, 0.03–0.05 GPa, and ∼150 K. A 150 K was above, or around, the recently recognized glass transition temperatures of amorphous ices, and the crystallization did not occur, indicating that the direct observation of LLCP is feasible. The low-temperature LLCP has implication to the argument of the relation between the interaction potential of water molecule and the polyamorphic phase diagram.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...