ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J., Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. O., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C., Kang, K., Kolodziejczyk, N., Kortzinger, A., Le Traon, P., Lenn, Y., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., & Yasuda, I. On the future of Argo: A global, full-depth, multi-disciplinary array. Frontiers in Marine Science, 6, (2019): 439, doi:10.3389/fmars.2019.00439.
    Description: The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
    Description: DR, MS, and NZ were supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). WO, SJ, and SWi were supported by the US Argo Program through the NOAA Grant NA14OAR4320158 (CINAR). EuroArgo scientists were supported by the two grants: (1) AtlantOS funding by the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 633211 and (2) Monitoring the Oceans and Climate Change with Argo (MOCCA) Co-funded by the European Maritime and Fisheries Fund (EMFF) Project No. SI2.709624. This manuscript represents a contribution to the following research projects for HC, CaS, and FD: remOcean (funded by the European Research Council, grant 246777), NAOS (funded by the Agence Nationale de la Recherche in the frame of the French “Equipement d’avenir” program, grant ANR J11R107-F), AtlantOS (funded by the European Union’s Horizon 2020 Research and Innovation Programme, grant 2014-633211), and the BGC-Argo project funded by the CNES. DB was funded by the EU RINGO project (730944 H2020-INFRADEV-2016-1). RF was supported by the AGS-1835576. GCJ was supported by the Global Ocean Monitoring and Observing Program, National Oceanic and Atmospheric Administration (NOAA), U.S., and the Department of Commerce and NOAA Research. LT was funded under the SOCCOM Grant No. NSF PLR-1425989. VT’s contribution was supported by the French National Research Agency (ANR) through the EQUIPEX NAOS (Novel Argo Observing System) under the reference ANR-10-EQPX-40 and by the European H2020 Research and Innovation Programme through the AtlantOS project under the reference 633211. WW was supported by the Argo Poland program through the Ministry of Sciences and Higher Education Grant No. DIR/WK/2016/12. AmW was funded by the NSF-OCE1434722. K-RK is funded by the National Institute of Meteorological Sciences’ Research and Development Program “Development of Marine Meteorology Monitoring and Next-generation Ocean Forecasting System” under the grant KMA2018-00421. CSchmid is funded by NOAA/AOML and the US Argo Program through NOAA/OOMD. MBa is funded by NOAA/AOML.
    Keywords: Argo ; Floats ; Global ; Ocean ; Warming ; Circulation ; Temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 48 (1992), S. 231-237 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The behavior of the isolated vortices over the topographic-βis considered with the quasi-geostrophic two-layer model, in the limit of very shallow upper layer, in the absence of planetary-β. The results are compared with the observed Kurshio warm-core rings. When a ring drifts southward (northward) relative to the meridional mean current, it radiates (does not radiate) Rossby waves in the lower layer. Even when the lower layer is radiating, the decaying is very slow as long as the ring drifts closely to a background current.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 51 (1995), S. 145-170 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The two-dimensional asymmetric merger of two like-signed uniform vorticity patches with different sizes (r i ) and vorticities (q i ) was examined with contour dynamics experiments. We determined the critical centroid distances for merger (d merger), which vortex survived the interaction and the processes involved in the merger. An explicit empirical critical merger distance was established asd merger/r 1 =a·(q 2/q 1)1/2·(r 2/r 1)+b (subscript 1 denotes the properties of the losing [destroyed] vortex and 2 the winning [not destroyed] vortex). The relationship seems applicable for wide range of parameters. The winning vortex was found to be determined primarily by vorticity rather than size. A small but strong enough vortex is absorbed into a larger and weaker vortex and becomes the high vorticity core of the merged vortex. A small and weak vortex is strained out to a thin filament. The vorticity ratio which determined when the first vortex was destroyed while the second survived, (q 2/q 1)win, was established empirically as a function of radius ratio,r 1/r 2. Forr 1/r 2∼1, (q 2/q 1)win is almost identical with the vorticity ratio (q 2/q 1)dmin which gives the minimum critical merger distance for the particular size ratior 1/r 2. For extremely large size ratio, (q 2/q 1)win〉(q 2/q 1)dmin Partial mergers were seen for a centroid distance which is close to and less than the critical merger distance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 41 (1985), S. 259-273 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The bimodality of the Kuroshio path is studied numerically with a barotropic inflow-outflow model. The dynamics that determines the path depends on the Rossby number,Ro (proportional to inlet velocity) and the Reynolds number (representing effects of viscosity). At lowRo (〈Ro 1) only a meander path occurs, while at highRo(Ro 2) only a straight path is developed. Between these critical values (Ro 1≦Ro≦Ro2) either of the two paths can occur (multiple states), and the choice of path is determined by its history. Increase (decrease) inRo acrossRo 2 (Ro 1) leads to catastrophic transition from one path to the other. In the intermediate range (Ro 1≦Ro≦Ro2), the straight path is conditionally unstable to finite amplitude disturbances, and abrupt changes to the meander path take place. Absolute vorticity is almost conserved along the meander path, while along the straight path it is dissipated in large amount near the coast. At low Re, the flow tends to a viscous flow, and steady states are obtained. At highRe, time variations with different periods for the meander and straight paths become dominant. Intermittent transitions from one state to the other without any changes of external parameters are found at intermediateRo and at highRe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-27
    Description: The mechanism by which nutrients in the deep ocean are uplifted to maintain nutrient-rich surface waters in the subarctic Pacific has not been properly described. The iron (Fe) supply processes that control biological production in the nutrient-rich waters are also still under debate. Here, we report the processes that determine the chemical properties of intermediate water and the uplift of Fe and nutrients to the main thermocline, which eventually maintains surface biological productivity. Extremely nutrient-rich water is pooled in intermediate water (26.8 to 27.6 σθ) in the western subarctic area, especially in the Bering Sea basin. Increases of two to four orders in the upward turbulent fluxes of nutrients were observed around the marginal sea island chains, indicating that nutrients are uplifted to the surface and are returned to the subarctic intermediate nutrient pool as sinking particles through the biological production and microbial degradation of organic substances. This nutrient circulation coupled with the dissolved Fe in upper-intermediate water (26.6 to 27.0 σθ) derived from the Okhotsk Sea evidently constructs an area that has one of the largest biological CO2drawdowns in the world ocean. These results highlight the pivotal roles of the marginal seas and the formation of intermediate water at the end of the ocean conveyor belt.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-28
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-07-25
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-01
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...