ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A positive correlation exists between temperature and atmospheric concentrations of carbon dioxide and methane over the last 220,000 years of glacial history, including two glacial and three interglacial periods. A similar correlation exists for the Little Ice Age and for contemporary data. Although the dominant processes responsible may be different over the three time periods, a warming trend, once established, appears to be consistently reinforced through the further accumulation of heat-trapping gases in the atmosphere; a cooling trend is reinforced by a reduction in the release of heat-trapping gases. Over relatively short periods of years to decades, the correspondence between temperature and greenhouse gas concentrations may be due largely to changes in the metabolism of terrestrial ecosystems, whose respiration, including microbial respiration in soils, responds more sensitively, and with a greater total effect, to changes in temperature than does gross photosynthesis. Despite the importance of positive feedbacks and the recent rise in surface temperatures, terrestrial ecosystems seem to have been accumulating carbon over the last decades. The mechanisms responsible are thought to include increased nitrogen mobilization as a result of human activities, and two negative feedbacks: CO2 fertilization and the warming of the earth, itself, which is thought to lead to an accumulation of carbon on land through increased mineralization of nutrients and, as a result, increased plant growth. The relative importance of these mechanisms is unknown, but collectively they appear to have been more important over the last century than a positive feedback through warming-enhanced respiration. The recent rate of increase in temperature, however, leads to concern that we are entering a new phase in climate, one in which the enhanced greenhouse effect is emerging as the dominant influence on the temperature of the earth. Two observations support this concern. One is the negative correlation between temperature and global uptake of carbon by terrestrial ecosystems. The second is the positive correlation between temperature and the heat-trapping gas content of the atmosphere. While CO2 fertilization or nitrogen mobilization (either directly or through a warming-enhanced mineralization) may partially counter the effects of a warming-enhanced respiration, the effect of temperature on the metabolism of terrestrial ecosystems suggests that these processes will not entirely compensate for emissions of carbon resulting directly from industrial and land-use practices and indirectly from the warming itself. The magnitude of the positive feedback, releasing additional CO2, CH4, and N2O, is potentially large enough to affect the rate of warming significantly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.
    Description: Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production.
    Keywords: Net ecosystem production ; Net ecosystem carbon balance ; Gross primary production ; Ecosystem respiration ; Autotrophic respiration ; Heterotrophic respiration ; Net ecosystem exchange ; Net biome production ; Net primary production
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 297623 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The FAO/UNEFs8'9 estimate of deforestation in the tropics is compared in Table 1 with estimates made by Myers10'12 and the FAO's Production Yearbook13. Comparison of the rates given by FAO/UNEP and the Production Yearbook assumes that deforestation of the open and closed forests of the former is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The exchanges of phosphorus between the Flax Pond, a tidal Spartina alterniflora marsh on the north shore of Long Island (USA) and Long Island Sound were measured over 18 months. Phosphate was exported from the marsh from May through December and imported during the remainder of the year. Organic phosphorus appears to be accumulated in all seasons, but the yearly phosphorus budget of the marsh is approximately balanced despite the accumulation of about 6 mm of sediment annually.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Journal of Geophysical Research (ISSN 0148-0227); 92; 2157-216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: This work has been carried out in a period of great changes in Russia that have brought extreme hardships to the scientific community. We have been fortunate in establishing excellent relationships with the Russian scientific community and believe we have helped to retain coherence in circumstances where the continuation of research was in doubt. We have learned much and have been effective in advancing, even establishing, scholars and programs in Russia that might not otherwise have survived the transition. The vigor of the International Boreal Forest Research Association (IBFRA) is one sign of the value and success of these activities. Largely due to the current political and economic transitions in the former Soviet Union, the forests of much of the FSU are under reduced logging pressure. In addition, there is a decline in air pollution as heavy industry has waned, at least for now. Russian forestry statistics and our personal experience indicate a decline, perhaps as high as 60%, in forest harvesting over the last few years. But, new international market pressures on the forests exist in European Russia and in the Far East. The central government, still the "owner" of Russian forests, is having difficulty maintaining control over forest use and management particularly in the Far East and among the southern territories that have large, nonRussian ethnic populations. Extraordinarily large areas of mixed forest and grasslands, sparse or open forests, and mixed forests and tundra must be considered when calculating forest area It is insufficient to think of Russia as simply forest and nonforest Forest productivity, measured as growth of timber, appears to be in decline in all areas of Russia except in European Russia. Most information and publications on the recent history of these forests is heavily dependent on statistical data from the Soviet era. The interpretation of these data is very much open to debate. Anatoly Shwidenko, a long term collaborator and former senior scientist (mensuration) for the Soviet Committee on Forests, now a scholar at the International Institute of Applied Systems Analysis (IIASA), Vienna, has provided abundant contributions from the data available to him and from his experience. Forest stand carbon is concentrated in the Russian Far East (i.e. Primorski Kray), Central-Southern Siberia and European Russia But, soil carbon can be 10 times forest stand C. Our efforts in mapping the area and changes in area (as well as the internal structure) of forests have made major contributions to our joint understanding of the scale and status of these forests. To realize the importance of this contribution one needs only to recognize that any large scale Soviet-era maps of the area did not include latitude and longitude. Even today, there is great reluctance to provide these data, the basis of any GIS.
    Keywords: Environment Pollution
    Type: NASA/CR-97-206109 , NAS 1.26:206109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1962-07-01
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-03-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1975-07-01
    Print ISSN: 0022-0477
    Electronic ISSN: 1365-2745
    Topics: Biology
    Published by Wiley on behalf of British Ecological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1964-04-01
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...