ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Toomey, Michael R; Woodruff, Jonathan D; Donnelly, Jeffrey P; Ashton, Andrew D; Perron, J Taylor (2016): Seismic evidence of glacial-age river incision into the Tahaa barrier reef, French Polynesia. Marine Geology, 380, 284-289, https://doi.org/10.1016/j.margeo.2016.04.008
    Publication Date: 2019-01-26
    Description: Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial?interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 447 (2007), S. 465-468 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The processes that control the formation, intensity and track of hurricanes are poorly understood. It has been proposed that an increase in sea surface temperatures caused by anthropogenic climate change has led to an increase in the frequency of intense tropical cyclones, but this proposal ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-07
    Description: A field study was performed in the lower Hudson River, a partially mixed estuary with a relatively simple geometry (Figure 1), between August and October of 1995. The objectives of the study were (1) to quantify and characterize the turbulent transport of momentum and salt, and (2) to relate the turbulent transport processes to the local and estuary-wide dynamics. The measurement program consisted of fixed and shipboard components. At a central site, a moored array of temperature-conductivity sensors and optical backscatter sensors (OBS), a bottom-mounted acoustic Doppler current profiler (ADCP), and a bottom-mounted array of acoustic travel-time current sensors (BASS), temperature-conductivity sensors, and OBS sensors resolved the vertical structure of velocity, salinity and turbidity and the near-bottom turbulence structure. Moored and bottom-mounted velocity, temperature, conductivity and pressure sensors at five secondary sites quantified the spatial and temporal variabilty of velocity, salinity and bottom pressure. Shipboard measurements with an ADCP and a conductivity-temperature-depth (CTD) profiler, accompanied by an OBS sensor, resolved the spatial structure and tidal variability of velocity, salinity and turbidity along several cross-channel and along-channel transects. This report describes the measurements in detail. Section II describes the instrumentation, Section III describes the deployment and sampling schemes, Section IV describes the data processing, and Section V is a summary of plots of selected data. Section VI documents the data files and Sections VII and VII give acknowledgments and references.
    Description: Funding was provided by the National Science Foundation under Grant OCE-94-15617 and The Hudson River Foundation.
    Keywords: Stress ; Salt flux ; Mixed estuary
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9092431 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2017-01-04
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1999
    Description: This study uses geophysical and sedimentological data collected from the Lower Hudson River estuary to identify the depositional response of the estuary to high river discharge events. Erosional and depositional environments in the estuary are identified through the use of side-scan sonar, bottom penetrating sonar and surficial sediment sampling. Sediment cores are used to document deposit thicknesses and to obtain the spatial distribution of estuarine deposits. Results show a high degree of spatial and temporal variability in sedimentation within the estuary. Two primary deposits are identified underneath the turbidity maximum for the estuary. Approximately 300,000 metric tons of sediment were deposited within these two deposits during May and June of 1998. This short-term accumulation underneath the turbidity maximum of the estuary can account for 30 to 98 percent of the estimated, river-borne sediment load supplied to the estuary during the 1997-1998 water year. Both the tidally produced stratigraphy observed in sediment cores and the spatial distribution of identified deposits, support the theory that sedimentation underneath the turbidity maximum of the estuary is primarily the results of a convergence in bottom water flow, caused by the formation of a salinity front during ebb tide.
    Description: This research was funded by the Hudson River Foundation and a National Science Foundation Coastal Trainee Fellowship.
    Keywords: Sedimentation and deposition ; Sediment transport ; River sediments ; Estuarine sediments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 2993–3008, doi:10.1002/ggge.20217.
    Description: Recent work suggests that the patterns of intense (≥category 3 on the Saffir-Simpson scale) hurricane strikes over the last few millennia might differ from that of overall hurricane activity during this period. Prior studies typically rely on assigning a threshold storm intensity required to produce a sedimentological overwash signal at a particular coastal site based on historical analogs. Here, we improve on this approach by presenting a new inverse-model technique that constrains the most likely wind speeds required to transport the maximum grain size within resultant storm deposits. As a case study, the technique is applied to event layers observed in sediments collected from a coastal sinkhole in northwestern Florida. We find that (1) simulated wind speeds for modern deposits are consistent with the intensities for historical hurricanes affecting the site, (2) all deposits throughout the ∼2500 year record are capable of being produced by hurricanes, and (3) a period of increased intense hurricane frequency is observed between ∼1700 and ∼600 years B.P. and decreased intense storm frequency is observed from ∼2500 to ∼1700 and ∼600 years B.P. to the present. This is consistent with prior reconstructions from nearby sites. Changes in the frequency of intense hurricane strikes may be related to the degree of penetration of the Loop Current in the Gulf of Mexico.
    Description: This work was supported by the National Science Foundation.
    Description: 2014-02-22
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Inverse-modeling ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-17
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2226–2242, doi:10.1002/2016JC012595.
    Description: Off-river coves and embayments provide accommodation space for sediment accumulation, particularly for sandy estuaries where high energy in the main channel prevents significant long-term storage of fine-grained material. Seasonal sediment inputs to Hamburg Cove in the Connecticut River estuary (USA) were monitored to understand the timing and mechanisms for sediment storage there. Unlike in freshwater tidal coves, sediment was primarily trapped here during periods of low discharge, when the salinity intrusion extended upriver to the cove entrance. During periods of low discharge and high sediment accumulation, deposited sediment displayed geochemical signatures consistent with a marine source. Numerical simulations reveal that low discharge conditions provide several important characteristics that maximize sediment trapping. First, these conditions allow the estuarine turbidity maximum (ETM) to be located in the vicinity of the cove entrance, which increases sediment concentrations during flood tide. Second, the saltier water in the main channel can enter the cove as a density current, enhancing near-bed velocities and resuspending sediment, providing an efficient delivery mechanism. Finally, higher salinity water accumulates in the deep basin of the cove, creating a stratified region that becomes decoupled from ebb currents, promoting retention of sediment in the cove. This process of estuarine-enhanced sediment accumulation in off-river coves will likely extend upriver during future sea level rise.
    Description: NSF Grant Numbers: EAR-1148244 , OCE-0926427
    Description: 2017-09-17
    Keywords: Sediment storage ; Estuary ; Estuarine turbidity maximum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2017-01-04
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009.
    Description: Tropical cyclone activity over the last 5000 years is investigated using overwash sediments from coastal lagoons on the islands of Vieques, Puerto Rico and Koshikijima, Japan. A simple sediment transport model can reproduce the landward fining deposits observed at Vieques, and reveals that although the record exhibits centennial-tomillennial changes in hurricane overwash frequency, the magnitude of these flooding events has remained relatively constant. Stochastic simulations of hurricane overwash show that breaks in activity at Vieques are extremely long and unlikely to occur under the current hurricane climatology and the present barrier morphology. Periods of less frequent hurricane deposition at Vieques are contemporaneous with intervals of increased El Niño occurrences and reduced precipitation in West Africa, suggesting a dominant influence by these two climatic phenomena. Hiatuses in overwash activity between 3600- to-2500 and 1000-500 years ago are longer than what is generated by overwash simulations under a constant El Niño-like state, indicating that mechanisms in addition to variability in the El Niño/Southern Oscillation are required to completely produce the overwash variability at Vieques. Periods of low overwash activity at Vieques are concurrent with increased overwash activity at Kamikoshiki and may indicate a correspondence between tropical cyclone activity in the western Northern Atlantic and the western North Pacific.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, the Risk Prediction Initiative, the National Geographic Society, the Andrew W. Mellon Foundation Endowed Fund for Innovative Research, and graduate student fellowships from the Coastal Ocean Institute at Woods Hole Oceanographic Institution and the United States Geological Survey.
    Keywords: Cyclones ; Sedimentation and deposition
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 880-883, doi:10.1038/nature08219.
    Description: Atlantic Tropical Cyclone (TC) activity, as measured by annual storm counts, reached anomalous levels over the past decade. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise. Here, we place recent activity in a longer-term context, by comparing two independent estimates of TC activity over the past 1500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate employs a previously published statistical model of Atlantic TC activity driven by proxy-reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic TC activity during Medieval times (around AD 1000) followed by a subsequent lull in activity. The Medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results in the statistical model from a ‘perfect storm’ of La Niña-like climate conditions and relative tropical Atlantic warmth.
    Description: M.E.M. and Z.Z. acknowledge support from the ATM programme of the National Science Foundation (grant ATM-0542356). J.P.D. acknowledges support from the EAR and OCE programmes of the National Science Foundation (grants EAR-0519118 and OCE-0402746), the Risk Prediction Initiative at the Bermuda Institute for Ocean Sciences, and the Inter-American Institute for Global Change Research.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-05
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-02
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 380 (2016): 284–289, doi:10.1016/j.margeo.2016.04.008.
    Description: Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial–interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.
    Description: This project was supported by a Jackson School Distinguished Postdoctoral Fellowship to Michael Toomey and the WHOI Coastal Ocean Institute and Ocean and Climate Change Institute.
    Keywords: Coral ; Island ; Lagoon ; Dissolution ; Morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...