ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The potential exists that a hurricane striking the Kennedy Space Center while a Space Shuttle is on the pad. Winds in excess of 74.5 knots could cause the failure of the holddown bolts bringing about the catastrophic loss of the entire vehicle. Current plans call for the rollback of the shuttle when winds of that magnitude are forecast to strike the center. As this is costly, a new objective method for making rollback/rideout decisions based upon Bayesian Analysis and economic cost versus loss is presented.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Univ. of Central Florida, NASA(ASEE Summer Faculty Fellowship Program; p 593-632
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Weather forecasting has been called the second oldest profession. To do so accurately and with some consistency requires an ability to understand the processes which create the clouds, drive the winds, and produce the ever changing atmospheric conditions. Measurement of basic parameters such as temperature, water vapor content, pressure, windspeed and wind direction throughout the three dimensional atmosphere form the foundation upon which a modern forecast is created. Doppler radar, and space borne remote sensing have provided forecasters the new tools with which to ply their trade.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Alabama Univ., Research Reports: 1994 NASA(ASEE Summer Faculty Fellowship Program; 5 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Since the first earth orbiting satellite sent pictures of the earth back to them, atmospheric scientists have been focused on the possibilities of using that information as both a forecasting tool and as a meteorological research tool. With the latest generation of Geostationary Operational Environmental Satellites (GOES) now entering service, that view of the earth yields views at a frequency and resolution never before available. These satellites have imagers with a five band multi-spectral capability with high spatial resolution. In addition, the sounder has eighteen thermal infrared (IR) channels plus one low-resolution visible band. With a resolution as small as one kilometer, GOES provides scientists with a powerful eye on the atmosphere. Menzel and Purdom (1994) detail both the imager and sounder capability as well as other systems on the GOES satellites. Immediately apparent in the visible channel are the patterns of clouds swirling over both oceans and continents. These clouds range in size from huge planetary systems covering thousands of kilometers to puffy fair weather cumulus clouds on the order of half a kilometer in size. With the IR sensors temperature patterns are observed. High clouds appear very cold, while low stratus field show temperatures near that of the surface. The surface, in turn, generally appears warmer than the clouds. It would seem then a simple manner to determine cloud and surface temperature from the imagery, but such is not the case. While most of the atmospheric constituents are well mixed and homogeneous, water vapor is not. The water molecule, because of its unique structure and vibration modes, affects the transmittance of the atmosphere most notably in the infrared regions. There are regions of the IR spectrum where water vapor acts as a strong absorber, and at others it is nearly transparent. The transparent wavelengths are called windows, and one such window occurs at 11.2 microns. Adjacent to this window at 12.7 microns which is strongly absorbed by water vapor. These two wavelengths form what is known as a split window, the utility of which was used. Using the linearized form of the radiative transfer equation, they were able to use the split window to determine the amount of water vapor present in the atmosphere. Jedlovec developed the physical split-window (PSW) technique which determines the integrated water content (IWC). The PSW method using Visible Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) found on the older versions of the GOES satellites was used. Recently, Jedlovec and colleagues have been attempting to apply the PSW method using full disk IR imagery obtained by the new generation of GOES satellites. IWC is essential for improved analysis and prediction of convective storms which have been observed to develop in regions of both strong and rapidly evolving moisture gradients. It has also been used in the prediction of clouds and precipitation.
    Keywords: Earth Resources and Remote Sensing
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Winds in excess of 74.5 knots could cause severe damage to a space shuttle on the launch pad. Current plans exist for rollback to the Vehicle Assembly Building, but require 48 hour leadtime to implement. Decisions based upon cost/loss are evaluated to ascertain whether predetermined forecast probabilities for rollback/rideout decisions can be made far in advance of hurricane seasons for use in decision making.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA. Kennedy Space Center, NASA(ASEE Summer Faculty Fellowship Program; p 487-519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: FAA, The 1992 International Aerospace and Ground Conference on Lightning and Static Electricity: Addendum; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NWS forecast operations and decision-making. To meet long-term program expectations, it is not sufficient simply to give forecasters sophisticated workstations or new forecast products without fully assessing the ways in which they will be utilized. Close communication must be established between the research and operational communities so that developers have a complete understanding of user needs. In turn, forecasters must obtain a more comprehensive knowledge of the modeling and sensing tools available to them. A major goal of the SPoRT Program is to develop metrics and conduct assessment studies with NWS forecasters to evaluate the impacts and benefits of ESE experimental products on forecast skill. At a glance the task seems relatively straightforward. However, performing assessment of experimental products in an operational environment is demanding. Given the tremendous time constraints placed on NWS forecasters, it is imperative that forecaster input be obtained in a concise unobtrusive manor. Great care must also be taken to ensure that forecasters understand their participation will eventually benefit them and WFO operations in general. Two requirements of the assessment plan developed under the SPoRT activity are that it 1) Can be implemented within the WFO environment; and 2) Provide tangible results for BOTH the research and operational communities. Supplemental numerical quantitative precipitation forecasts (QPF) were chosen as the first experimental SPoRT product to be evaluated during a Pilot Assessment Program conducted 1 May 2003 within the Huntsville AL National Weather Service Forecast Office. Forecast time periods were broken up into six- hour bins ranging from zero to twenty-four hours. Data were made available for display in AWIPS on an operational basis so they could be efficiently incorporated into the forecast process. The methodology used to assess the value of experimental QPFs compared to available operational products is best described as a three-tier approach involving both forecasters and research scientists. Tier-one is a web-based survey completed by duty forecasters on the aviation and public desks. The survey compiles information on how the experimental product was used in the forecast decision making process. Up to 6 responses per twenty-four hours can be compiled during a precipitation event. Tier-two consists of an event post mortem and experimental product assessment performed daily by the NASA/NWS Liaison. Tier-three is a detailed breakdown/analysis of specific events targeted by either the NWS SO0 or SPoRT team members. The task is performed by both NWS and NASA research scientists and may be conducted once every couple of months. The findings from the Pilot Assessment Program will be reported at the meeting.
    Keywords: Meteorology and Climatology
    Type: 20th Conference on Weather Analysis and Forecasting; Jan 11, 2004 - Jan 15, 2004; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...