ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Using immunohistochemistry, vasoactive intestinal peptide (VIP) was visualized in taste bud cells of the carp, Cyprinus carpio, and the European catfish, Silurus glanis, by means of light and electron microscopy. Intracellular membrane systems, presumably smooth endoplasmic reticulum, of light (sensory) cells, but not of dark (supporting) cells and basal cells, were densely labelled with antibody. In the frog (four species: Rana temporaria, R. ridibunda, R. arvalis, R. pipiens), taste bud cells did not label. However, the dense basal nerve fibre plexus, some subepithelial ganglionic cells, but no ascending intragemmal fibres, were immunoreactive. In fish, the results support evidence that VIP is involved in the modulation of taste transduction at the level of receptor cells. In the frog, an indirect, possibly vasodilatatory effect on taste perception may be considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Sensory cells ; Taste organ ; Electron microscopy ; Bombina orientalis, Rana pipiens (Anura)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...