ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-08
    Description: The observation of anomalous (non mass-dependent) sulphur isotope compositions in Archaean and early Proterozoic rocks but not in rocks younger than approximately 2 Ga has been interpreted to reflect fundamental change in the terrestrial sulphur cycle, in atmospheric chemistry, and in atmospheric oxygen content. Similar non mass-dependent sulphur isotope compositions in present-day samples (atmospheric aerosols and ice-core horizons containing remnants of stratosphere-piercing volcanic eruptions) are interpreted to carry information about modern atmospheric chemistry and transport. The interpretation of these observations hinges on our understanding of the processes that produce non mass-dependent sulphur isotope compositions, the processes that transport and transfer the isotopic signals throughout the sulphur cycle, and the processes that act to preserve or erase these isotopic signals once they are established. The growing dataset and hypotheses related to non mass-dependent sulphur are evaluated, emphasizing that which remains to be learned about the evolution of the record, the compositions of key reservoirs, and the transfer of the signal from the atmosphere to the surface and ultimately to the deep Earth.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-05
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 305, doi:10.1038/s41467-017-02701-y.
    Description: Correction to: Nature Communications https://doi.org/10.1038/s41467-017-01229-5, Article published online 07 November 2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-01
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 1342, doi:10.1038/s41467-017-01229-5.
    Description: Geochemical analyses of sedimentary barites (barium sulfates) in the geological record have yielded fundamental insights into the chemistry of the Archean environment and evolutionary origin of microbial metabolisms. However, the question of how barites were able to precipitate from a contemporary ocean that contained only trace amounts of sulfate remains controversial. Here we report dissolved and particulate multi-element and barium-isotopic data from Lake Superior that evidence pelagic barite precipitation at micromolar ambient sulfate. These pelagic barites likely precipitate within particle-associated microenvironments supplied with additional barium and sulfate ions derived from heterotrophic remineralization of organic matter. If active during the Archean, pelagic precipitation and subsequent sedimentation may account for the genesis of enigmatic barite deposits. Indeed, barium-isotopic analyses of barites from the Paleoarchean Dresser Formation are consistent with a pelagic mechanism of precipitation, which altogether offers a new paradigm for interpreting the temporal occurrence of barites in the geological record.
    Description: This research was made possible with support from the National Science Foundation Division of Ocean Sciences (OCE-PRF 1421196, OCE-1430015, and OCE-1443577), The Andrew W. Mellon Foundation Endowed Fund for Innovative Research, and the Agouron Institute Geobiology Postdoctoral Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-16
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (35), (2019): 17207-17212, doi:10.1073/pnas.1900325116.
    Description: It has been hypothesized that the overall size of—or efficiency of carbon export from—the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ∼ −0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of 〉80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth’s GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.
    Description: Olivia M. J. Dagnaud assisted during fieldwork. S. V. Lalonde and E. A. Sperling provided helpful comments on an early version of the manuscript. We thank N. J. Planavsky and an anonymous reviewer for their constructive feedback. M.S.W.H. was supported by an NSERC PGS-D and student research grants from National Geographic, the APS Lewis and Clark Fund, Northern Science Training Program, McGill University Graduate Research Enhancement and Travel Awards, Geological Society of America, Mineralogical Association of Canada, and Stanford University. P.W.C. acknowledges support from the University of Colorado Boulder, the Agouron Institute Geobiology postdoctoral Fellowship program, a Natural Sciences and Engineering Council of Canada Postgraduate Scholarship–Doctoral Program scholarship, and the NSTP. Y.P. was supported by the Strategic Priority Research Program of CAS (XDB26000000). T.J.H. thanks Maureen E. Auro for laboratory assistance and the NSF for supporting isotope research in the NIRVANA Labs.
    Description: 2020-02-12
    Keywords: Proterozoic ; primary productivity ; Great Oxidation Event ; triple-oxygen isotopes ; nutrient limitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-03-01
    Description: Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H_2O-rich fluids at 500 bar and 565–710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102–104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well. ©2001 Springer-Verlag
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-05-01
    Description: The conditions at which monazite and allanite were produced and destroyed during prograde metamorphism of pelitic rocks were determined in a Buchan and a Barrovian regional terrain and in a contact aureole, all from northern New England, USA. Pelites from the chlorite zone of each area contain monazite that has an inclusion-free core surrounded by a highly irregular, inclusion-rich rim. Textures and 208Pb/232Th dates of these monazites in the Buchan terrain, obtained by ion microprobe, suggest that they are composite grains with detrital cores and very low-grade metamorphic overgrowths. At exactly the biotite isograd in the regional terrains, composite monazite disappears from most rocks and is replaced by euhedral metamorphic allanite. At precisely the andalusite or kyanite isograd in all three areas, allanite, in turn, disappears from most rocks and is replaced by subhedral, chemically unzoned monazite neoblasts. Allanite failed to develop at the biotite isograd in pelites with lower than normal Ca and/or Al contents, and composite monazite survived at higher grades in these rocks with modified texture, chemical composition, and Th–Pb age. Pelites with elevated Ca and/or Al contents retained allanite in the andalusite or kyanite zone. The best estimate of the time of peak metamorphism at the andalusite or kyanite isograd is the mean Th–Pb age of metamorphic monazite neoblasts that have not been affected by retrograde metamorphism: 364.3±3.5 Ma in the Buchan terrain, 352.9±8.9 Ma in the Barrovian terrain, and 403.4±5.9 Ma in the contact aureole. Some metamorphic monazites from the Buchan terrain have ages partially to completely reset during an episode of retrograde metamorphism at 343.1±9.1 Ma. Interpretation of Th–Pb ages of individual composite monazite grains is complicated by the occurrence of subgrain domains of detrital material intergrown with domains of material formed or recrystallized during prograde and retrograde metamorphism. ©2003 Springer-Verlag
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-01
    Description: We report here high-precision multiple sulfur and iron isotope compositions for a series of mineralized samples from Ni-Cu-(PGE) sulfide deposits in the Archean Tati greenstone belt and the Phikwe Complex of eastern Botswana. Mineralized samples from the Phoenix and Selkirk Ni-Cu-(PGE) deposits in the Tati greenstone belt display slightly positive d34S isotope values, ranging from 0.2 to 0.8‰ V-CDT. ?33S values of sulfides at Phoenix and Selkirk are -0.01 to -0.08‰ V-CDT, suggesting either a dominantly mantle sulfur source or effective eradication of a crustal ?33S anomaly through equilibration with large amounts of silicate melt. In the Selebi-Phikwe belt, a granite-gneiss terrane with abundant amphibolite lenses of either volcanic and/or intrusive nature, mineralized lower grade samples from the Phikwe, Phokoje, and Dikoloti Ni-Cu-(PGE) deposits have more variable d34S values ranging from -3.1 to +0.3‰ and display significant mass independent anomalies (?33S values ranging from -0.89 to -0.27‰), suggesting that barren sulfides associated with distal or low-temperature sea-floor hydrothermal activity contributed sulfur to these deposits. Iron isotopes of sulfides from these deposits show a relatively small range of negative ?56Fe values (-0.29 to -0.04‰), consistent with high-temperature fractionations in magmatic systems, with the exception of one sample from the Dikoloti Ni-Cu-(PGE) deposit of the Selebi-Phikwe greenstone belt, which shows a more negative d56Fe value of -0.61‰, consistent with assimilation of sedimentary or hydrothermal sulfides rather than fractionations in high-temperature magmatic systems. Data from this study highlight the complexity and variability that characterize ore-forming processes in magmatic systems. We suggest that the presence of sulfur-bearing lithologic units in host rocks of mafic and ultramafic intrusions may not be essential toward the assessment of the prospectivity of a province to host orthomagmatic nickel sulfides. Geologic settings without any or little sulfur in the stratigraphy, which have been traditionally neglected in terms of their prospectivity, should thus be revisited and possibly reassessed considering the potential importance of external source of sulfur to generate ore deposits.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-01
    Description: We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and “showings” within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between −1.9 and +2.5 ‰, and Δ33SV-CDT values of between −0.59 and −0.03 ‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0 ‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion. ©2014 Her Majesty the Queen in Right of Canada
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-01
    Description: Measurements of triple oxygen isotope ratios in barite horizons within post-Marinoan cap carbonates have provided some of the most compelling evidence that the Marinoan glaciation was a Snowball Earth event. However, the origin of these barite horizons remains unresolved. To constrain the Ba sources, and thus formation mechanisms of these horizons, we analyzed the Ba isotope composition of post-Marinoan barite deposits from Northwest Canada, Northern Norway, Brazil and South China. We augment these analyses with a Ba isotope survey of almost 100 modern and ancient additional barite measurements, including samples from pelagic (or ‘marine’), hydrothermal, terrestrial, Proterozoic stratiform and cold seep environments. Unlike modern cold seep or terrestrial barites, we find that globally-distributed post-Marinoan barites exhibit a relatively narrow isotopic range, suggesting a well-mixed, effectively limitless Ba source. Moreover, post-Marinoan deposits exhibit a similar mean Ba isotope composition to modern marine barites, which we interpret as evidence of a marine Ba source. Considered alongside existing geochemical, geological, and new Ba isotope survey data, we conclude that Ba in barite horizons was sourced from a well-mixed, Ba-replete but SO4-poor reservoir that accumulated during the Marinoan Snowball Earth interval. This deep Ba reservoir was then transported upward—either by ocean circulation or dolomitization of underlying cap carbonates—and was brought into contact with continental weathering-derived sulfate in a post-glacial meltwater surface layer. Thus, in addition to providing a plausible mechanism for generating globally-synchronous deposition of post-Marinoan barite horizons that reconciles all existing geochemical and geological data, our results demonstrate the utility of Ba isotopes to interrogate the origin of enigmatic barite deposits throughout the sedimentary record.
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...