ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-25
    Description: Abstract
    Description: Seismic Data, including raw, MSEED and SEG-Y files, of the large-scale controlled-source survey in Northern Namibia (Kaokoveld) using combined on- and offshore experiments.
    Keywords: LISPWAL ; geophysics ; controlled-source seismic survey, ; onshore ; offshore ; continental margin ; Namibia
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-04
    Description: In multibeam echosounder and sub-bottom profiler data acquired during RV Polarstern cruise ARK-VII/3a from the Hovgaard Ridge (Fram Strait), we found evidence for very deep (〉1200 m) iceberg scouring. Five elongated seafloor features have been detected that are interpreted to be iceberg scours. The scours are oriented in north-south/south-north direction and are about 15 m deep, 300 m wide, and 4 km long crossing the entire width of the ridge. They are attributed to multiple giant palaeo-icebergs that most probably left the Arctic Ocean southward through Fram Strait. The huge keel-depths are indicative of ice sheets extending into the Arctic Ocean being at least 1200 m thick at the calving front during glacial maxima. The deep St Anna Trough or grounded ice observed at the East Siberian Continental Margin are likely source regions of these icebergs that delivered freshwater to the Nordic Seas.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-24
    Description: Investigating the crust of northern Baffin Bay provides valuable indications for the still debated evolution of this area. The crust of the southern Melville Bay is examined based on wide-angle seismic and gravity data. The resulting P wave velocity, density, and geological models give insights into the crustal structure. A stretched and rifted continental crust underneath southern Melville Bay is up to 30 km thick, with crustal velocities ranging between 5.5 and 6.9 km/s. The deep Melville Bay Graben contains a 9 km thick infill with velocities of 4 to 5.2 km/s in its lowermost part. West of the Melville Bay Ridge, a ~80 km wide and partly only 5 km thick Continent-Ocean Transition (COT) is present. West of the COT, up to 5 km thick sedimentary layers cover a 4.3 to 7 km thick, two-layered oceanic crust. The upper oceanic layer 2 has velocities of 5.2 to 6.0 km/s, the oceanic layer 3 has been modeled with rather low velocities of 6.3 to 6.9 km/s. Low velocities of 7.8 km/s characterize the probably serpentinized upper mantle underneath the thin crust. The serpentinized upper mantle and low thickness of the oceanic crust are another indication for slow or ultraslow spreading during the formation of the oceanic part of the Baffin Bay. By comparing our results on the crustal structure with other wide-angle seismic profiles recently published, differences in the geometry and structure of the crust and the overlying sedimentary cover are revealed. Moreover, the type of margin and the extent of crustal types in the Melville Bay area are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-14
    Description: A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N to 81°N) is presented. The DBM has a grid cell size of 250 m x 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 singlebeam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially-derived troughs, fjords, grounding-zone wedges and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-20
    Description: The Cenozoic East African Rift System (EARS) extends from the Red Sea to Mozambique. Here we use seismic reflection and bathymetric data to investigate the tectonic evolution of the offshore branch of the EARS. The data indicate multiple and time-transgressive neotectonic deformations along ~800 km of the continental margin of northern Mozambique. We observe a transition from a mature rift basin in the north to a juvenile fault zone in the south. The respective timing of deformation is derived from detailed seismic stratigraphy. In the north, a ~30 km wide and more than 150 km long, N-S striking symmetric graben initiated as half-graben in the Late Miocene. Extension accelerated in the Pliocene, causing a continuous conjugate border fault and symmetric rift graben. Coevally the rift started to propagate southward, which resulted in a present-day ~30 km-wide half-graben, approximately 200 km further south. Since the Pleistocene, the rift has continued to propagate another ~300 km, where the incipient rift is reflected by sub-recent small-scale normal faulting. Estimates of the overall brittle extension of the matured rift range between 5 and 12 km, with an along-strike southward decrease of the extension rate. The offshore portion of the EARS evolves magma-poor, similar to the onshore western branch. The structural evolution of the offshore EARS is suggested to be related to and controlled by differing inherited lithospheric fabrics. Pre-existing fabrics may not only guide and focus extension but also control rift architecture.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-13
    Description: A new seismostratigraphic model has been established within the Arctic Ocean adjacent to the East Siberian Shelf on the basis of multichannel seismic reflection data acquired along a transect at 81°N. Ages for the sedimentary units were estimated via links to seismic lines and drill site data of the US Chukchi Shelf, the Lomonosov Ridge, and the adjacent Laptev Shelf. Two distinct seismic units were mapped throughout the area and are the constraints for dating the remaining strata. The lower marker unit, a pronounced high-amplitude reflector sequence (HARS), is the most striking stratigraphic feature over large parts of the Arctic Ocean. It indicates a strong and widespread change in deposition conditions. Probably it developed during Oligocene times when a reorientation of Arctic Plates took place, accompanied by the gradual opening of the Fram Strait, and a widespread regression of sea level. The top of the HARS likely marks the end of Oligocene/early Miocene (23 Ma). An age estimate for the base of the sequence is less clear, but likely corresponds to base of Eocene (˜56 Ma). The second marked unit detected on the seismic lines parallels the seafloor with a thickness of about 200 ms two-way travel time (160 m). Its base is marked by a change from a partly transparent sequence with weak amplitude reflections below to a set of continuous high-amplitude reflectors above. This interface likely marks the transition to large-scale glaciation of the northern hemisphere, and, therefore, is ascribed to the top Miocene (5.3 Ma).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-15
    Description: Earthquake locations along the southern Mid-Atlantic Ridge have large uncertainties due to the sparse distribution of permanent seismological stations in and around the South Atlantic Ocean. Most of the earthquakes are associated with plate tectonic processes related to the formation of new oceanic lithosphere, as they are located close to the ridge axis or in the immediate vicinity of transform faults. A local seismological network of ocean-bottom seismometers and land stations on and around the archipelago of Tristan da Cunha, allowed for the first time a local earthquake survey for one year. We relate intra-plate seismicity within the African oceanic plate segment north of the island partly to extensional stresses induced by a bordering large transform fault and to the existence of the Tristan mantle plume. The temporal propagation of earthquakes within the segment reflects the prevailing stress field. The strong extensional stresses in addition with the plume weaken the lithosphere and might hint at an incipient ridge jump. An apparently aseismic zone coincides with the proposed location of the Tristan conduit in the upper mantle southwest of the islands. The margins of this zone describe the transition between the ductile and the surrounding brittle regime. Moreover, we observe seismicity close to the islands of Tristan da Cunha and nearby seamounts, which we relate to ongoing tectono-magmatic activity.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-30
    Description: Nature Geoscience 8, 393 (2015). doi:10.1038/ngeo2416 Authors: John M. O’Connor, Kaj Hoernle, R. Dietmar Müller, Jason P. Morgan, Nathaniel P. Butterworth, Folkmar Hauff, David T. Sandwell, Wilfried Jokat, Jan R. Wijbrans & Peter Stoffers Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-26
    Description: A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk Vp/Vs ratio by the H-k analysis of receiver functions. In the Damara Belt the crustal thickness is ~35 km with a Vp/Vs ratio of 〈1.75. The crust is ~30 km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and Vp/Vs ratios are found at the landfall of the Walvis Ridge. Here and at ~150 km northeast of the coast, the crustal thickness increases dramatically reaching 44 km and the Vp/Vs ratios are extremely high (~1.89). These anomalies are interpreted as magmatic underplating produced by the mantle-plume during the breakup of Gondwana. The area affected by the plume is smaller than 300 km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-19
    Description: The interpretation of seismic refraction and gravity data acquired in 2010 gives new insights into the crustal structure of the West Greenland coast and the adjacent deep central Baffin Bay basin. Underneath Melville Bay, the depth of the Moho varies between 26 to 17 km. Stretched continental crust with a thickness of 25 to 14 km and deep sedimentary basins are present in this area. The deep Melville Bay Graben contains an up to ~11 km thick infill of consolidated and unconsolidated sediments with velocities of 1.6 to 4.9 km/s. Seawards, at the ~60 km wide transition between oceanic and stretched continental crust, a mount-shaped magmatic structure is observed, which most likely formed prior to the initial formation of oceanic crust. The up to 4 km high magmatic structure is underlain by a ~2 km thick and ~50 km wide high velocity lower crust. More to the west, in the oceanic part of the Baffin Bay basin, we identify a 2-layered, 3.5 to 6 km thin igneous oceanic crust with increasing thickness toward the shelf. Beneath the oceanic crust, the depth of the Moho ranges between 11.5 and 13.5 km. In the western part of the profile, oceanic layer 3 is unusually thin (~1.5 km) A possible explanation for the thin crust is accretion due to slow spreading, although the basement is notably smooth compared to the basement of other regions formed by ultra-slow spreading. The oceanic crust is underlain by partly serpentinized upper mantle with velocities of 7.6 to 7.8 km/s.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...