ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: Q 2839
    In: Münchener geographische Abhandlungen
    Type of Medium: Monograph available for loan
    Pages: 195 S. : Ill., graph. Darst
    ISBN: 3920397665
    Series Statement: Münchener geographische Abhandlungen 7
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0002(1204-A)
    In: Professional paper
    Type of Medium: Series available for loan
    Pages: IV, 35 S. + 1 pl.
    Series Statement: U.S. Geological Survey professional paper 1204-A
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Chantilly, Va. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 06.0436
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The very successful orbital missions of the 1990's, Clementine and Lunar Prospector, provided key mineralogical, geochemical, and geophysical data sets that extended our view of the Moon beyond what we knew from Apollo and Luna exploration to a truly global perspective. These new data sets have been integrated with information gained from three preceding decades of study of lunar samples and older, less complete remotely sensed data sets. Although there have been no new lunar sample-return missions since Apollo and Luna, new samples are available in the form of meteorites, recognized to be pieces of the Moon. These, too, play a role in improved knowledge of the Moon and in helping to couple information obtained by remote sensing with information obtained from rock and soil samples. As we stand on the edge of a new era of lunar and planetary exploration, including new missions to the Moon, Mars, and other planets and moons, we find it essential to examine in depth how the wide variety of data sets obtained during the course of lunar exploration can be used together to better understand the formation of the Moon and how it evolved to its present state. Such an understanding holds important lessons for the new era of lunar exploration as well as the exploration of other planets in the Solar System. This will ultimately lead to better knowledge of how our own planet Earth - with its unique environment suitable for the origin and evolution of life - originated and changed with time. This book assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This book seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.
    Type of Medium: Series available for loan
    Pages: XXII, 721 S. , Ill., graph. Darst., Kt.
    ISBN: 0-939950-72-3 , 978-0-939950-72-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 60
    Note: Chapter 1. New Views of Lunar Geoscience: An Introduction and Overview by Harald Hiesinger and James W. Head III, p. 1 - 81 Chapter 2. Understanding the Lunar Surface and Space-Moon Interactions by Paul Lucey, Randy L. Korotev, Jeffrey J. Gillis, Larry A. Taylor, David Lawrence, Bruce A. Campbell, Rick Elphic, Bill Feldman, Lon L. Hood, Donald Hunten, Michael Mendillo, Sarah Noble, James J. Papike, Robert C. Reedy, Stefanie Lawson, Tom Prettyman, Olivier Gasnault, and Sylvestre Maurice, p. 83 - 220 Chapter 3. The Constitution and Structure of the Lunar Interior by Mark A. Wieczorek, Bradley L. Jolliff, Amir Khan, Matthew E. Pritchard, Benjamin P. Weiss, James G. Williams, Lon L. Hood, Kevin Righter, Clive R. Neal, Charles K. Shearer, I. Stewart McCallum, Stephanie Tompkins, B. Ray Hawke, Chris Peterson, Jeffrey J. Gillis, and Ben Bussey, p. 221 - 364 Chapter 4. Thermal and Magmatic Evolution of the Moon by Charles K. Shearer, Paul C. Hess, Mark A. Wieczorek, Matt E. Pritchard, E. Mark Parmentier, Lars E. Borg, John Longhi, Linda T. Elkins-Tanton, Clive R. Neal, Irene Antonenko, Robin M. Canup, Alex N. Halliday, Tim L. Grove, Bradford H. Hager, D-C. Lee, and Uwe Wiechert, p. 365 - 518 Chapter 5. Cratering History and Lunar Chronology by Dieter Stˆffler, Graham Ryder, Boris A. Ivanov, Natalia A. Artemieva, Mark J. Cintala, and Richard A. F. Grieve, p. 519 - 596 Chapter 6. Development of the Moon by Michael B. Duke, Lisa R. Gaddis, G. Jeffrey Taylor, and Harrison H. Schmitt, p. 597 - 656 Chapter 7. Earth-Moon System, Planetary Science, and Lessons Learned by Michael B. Duke, Lisa R. Gaddis, G. Jeffrey Taylor, and Harrison H. Schmitt, p. 657 - 704
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Description / Table of Contents: A regional 3-dimensional ecosystem model is presented designed to simulate the nutrient and oxygen dynamics in the Benguela upwelling system. Strong upwelling driven by the southern trade winds supply cold, nutrient rich water. This supports a high primary production and results in a large flux of sinking detritus. Hence, a thick organic-rich mud belt is characteristic for the Namibian continental shelf. Both biological and hydrodynamic processes contribute to the very specific geochemistry on the Namibian shelf. Notably high rates of sulfate reduction in the sediment generate high concentrations of dissolved hydrogen sulfide in the surface sediment layers and may be released intermittently to the water column. Large chemoautotrophic sulfur bacteria thrive on hydrogen sulfide and form conspicuous mats on the sediment. Denitrification and nitrification are important components of the nitrogen cycle and anaerobic ammonium oxidation is known to play a significant role as a nitrogen sink in the Benguela upwelling system. Organisms at higher trophic levels like zooplankton play an important role for mineralisation but also for the vertical and lateral transport of organic matter. The physical model component is MOM-4 (Geophysical Fluid Dynamics Laboratory, GFDL). The ecosystem model is a NPZDmodel (Nutrients-Phytoplankton-Zooplankton-Detritus) and is an extension of the ecosystem model ERGOM (Fennel & Neumann, 2004). Three phytoplankton and three zooplankton functional types are distinguished. All ecologically relevant processes mediated by prokaryotes in this ecosystem are implemented and the environmental conditions (e.g. oxygen concentration, temperature etc.) define the metabolic rates. The regional ecosystem model is tailored to the specific oxygen and sulfur dynamics on the shelf and simulates both processes in the water column and in the sediment. This model has been developed within the GENUS-project (Geochemistry and Ecology of the Namibian Upwelling System) funded by the German Federal Ministry of Education and Research (BMBF, reference number 03F0497A). It is an endorsed project of the Integrated Marine Biogeochemistry and Ecosystem Research (IMBER). | Es wurde ein regionales 3-dimensionales Ökosystemmodell entwickelt, dass die Nährstoff- und Sauerstoffdynamiken im Benguela Auftriebsgebiet simuliert. Angetrieben durch den Südost- Passat wird kaltes, nährstoffreiches Wasser in die Deckschicht aufgetrieben. Das wiederum ist die Grundlage einer hohen Primärproduktion und totes organisches Material sinkt in hohen Raten in die Bodenschicht ab. Ein biomassereicher Schlammgürtel kennzeichnet die Schelfregion vor Namibia. Sowohl biologische als auch hydrodynamische Prozesse bewirken die sehr spezifischen geochmischen Sedimenteigenschaften auf dem Namibischen Schelf. Insbesondere hohe Sulfatreduktionsraten in den Sedimenten produzieren hohe Schwefelwasserstoffkonzentrationen in den oberen Sedimentschichten und Schwefelwasserstoff kann auch sporadisch in die Wassersäule austreten. Große chemoautotrophe Schwefelbakterien leben von der Oxidation des Schwefelwasserstoffs und bilden auffällige Bakterienmatten auf der Sedimentoberfläche. Denitrifizierung und Nitrifizierung sind wichtige Komponenten des Stickstoffzyklus und Anaerobe Ammoniumoxidation ist eine signifikante Stickstoffsenke im Benguela Auftriebsgebiet. Organismen auf höheren trophischen Ebenen wie das Zooplankton spielen sowohl eine wichtige Rolle in der Mineralisierung als auch im vertikalen und lateralen Transport von organischem Material. Die physikalische Modellkomponente ist MOM-4 (Geophysical Fluid Dynamics Laboratory, GFDL). Das Ökosystemmodell ist ein NPZD-Modell (Nährstoffe-Phytoplankton-Zooplankton-Detritus) und ist eine Weiterentwicklung des Ökosystemmodells ERGOM (Fennel & Neumann, 2004). Je drei funktionelle Gruppen werden für das Phytoplankton und das Zooplankton unterschieden. Alle ökologisch relevanten mikrobiellen Prozesse im Ökosystem sind implementiert und die Umweltbedingungen (z.B. Sauerstoffkonzentration, Temperatur) bestimmen die Umsatzraten. Das regionale Ökosystemmodell ist auf die speziellen Sauerstoff- und Schwefeldynamiken auf dem Schelf zugeschnitten und simuliert sowohl die Prozesse in der Wassersäule als auch im Sediment. Das Modell wurde im Rahmen des Projektes GENUS (Geochemistry and Ecology of the Namibian Upwelling System) entwickelt und ist finanziert vom Bundesministerium für Bildung und Forschung (BMBF, Förderkennzeichen 03F0497A). Das Projekt ist Teil des internationalen Forschungsverbundes IMBER (Integrated Marine Biogeochemistry and Ecosystem Research).
    Pages: Online-Ressource (69 Seiten)
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Description / Table of Contents: The Baltic Sea is surrounded by land, thus exchanges with the open ocean only take place through the North Sea. The Baltic Sea is divided into different deep basins connected by narrow sills and channels. Compared to the open ocean and the North Sea the salinity in the Baltic Sea is generally low due to large amounts of fresh water provided by river discharges. Inflowing saline water from the North Sea travels along the bottom and therefore produces a permanent halocline, separating the surface water from the deep water in the basins. Saline and also often oxygen-rich inflows are essential for the deep water renewal in the largest basin of the Baltic Sea, the Eastern Gotland Basin (EGB). These inflows occur only under certain meteorological conditions and thus so-called stagnation periods (periods without inflows) can occur for several years, oxygen depletion can lead to the formation of hydrogen sulfide in the Baltic deep water.
    Pages: Online-Ressource (XIII, 122 Seiten)
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Description / Table of Contents: The very successful orbital missions of the 1990's, Clementine and Lunar Prospector, provided key mineralogical, geochemical, and geophysical data sets that extended our view of the Moon beyond what we knew from Apollo and Luna exploration to a truly global perspective. These new data sets have been integrated with information gained from three preceding decades of study of lunar samples and older, less complete remotely sensed data sets. Although there have been no new lunar sample-return missions since Apollo and Luna, new samples are available in the form of meteorites, recognized to be pieces of the Moon. These, too, play a role in improved knowledge of the Moon and in helping to couple information obtained by remote sensing with information obtained from rock and soil samples. As we stand on the edge of a new era of lunar and planetary exploration, including new missions to the Moon, Mars, and other planets and moons, we find it essential to examine in depth how the wide variety of data sets obtained during the course of lunar exploration can be used together to better understand the formation of the Moon and how it evolved to its present state. Such an understanding holds important lessons for the new era of lunar exploration as well as the exploration of other planets in the Solar System. This will ultimately lead to better knowledge of how our own planet Earth - with its unique environment suitable for the origin and evolution of life - originated and changed with time. This book assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This book seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.
    Pages: Online-Ressource (XXII, 772 Seiten)
    ISBN: 0939950723
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI Bio-20-93994
    Type of Medium: Dissertations
    Pages: viii, 140 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2017 , Table of Contents I. Abstract II. Deutsche Zusammenfassung 0 Challenge 1 Introduction 1.1 The treeline ecotone 1.2 Stand structure drivers in the treeline ecotone 1.3 Climate change and recent treeline changes 1.4 Methods for treeline studies 1.4.1 Overview 1.4.2 Field-based treeline studies 1.4.3 Modelling treeline dynamics 1.5 Study Area 1.6 The Siberian treeline ecotone 1.7 Larix as study Species 1.8 Objectives of this thesis 1.9 Thesis outline 1.10 Contribution of the authors 1.10.1 Manuscript!- published 1.10.2 Manuscript II - submitted 1.10.3 Manuscript III-in preparation 1.10.4 Manuscript IV-submitted 2 Manuscript I Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Reference sites 2.3.2 Description of the model LAVESI 2.3.3 The ODD-Protocol for LAVESI 2.3.4 Parameterization 2.3.5 Khatanga climate time-series 2.3.6 Sensitivity analysis 2.3.7 Model experiments 2.4 Results 2.4.1 Sensitivity analysis 2.4.2 Taymyr treeline application 2.4.3 Temperature experiments 2.5 Discussion 2.5.1 Assessment of LAVESI sensitivity 2.5.2 Larix stand simulation under the Taymyr Peninsula weather 2.5.3 Transient Larix response to hypothetical future temperature changes 2.5.4 Conclusions 2.6 Acknowledgements 3 Manuscript II Dissimilar responses of larch stands in northern Siberia to increasing temperatures - a field and simulation based study 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study area 3.3.2 Field-based approach 3.3.3 Age analyses 3.3.4 Stand structure analyses 3.3.5 Seed analyses 3.3.6 Establishment history 3.3.7 Modelling approach 3.4 Results 3.4.1 Field data 3.4.2 Simulation study 3.5 Discussion 3.5.1 Data acquisition 3.5.2 Larch-stand patterns across the Siberian treeline ecotone 3.5.3 Warming causes densification in the forest-tundra 3.5.4 Intra-specific competition inhibits densification in the closed forest 3.5.5 Recruitment limitation decelerates densification and northward expansion ofthe single-tree tundra 3.6 Conclusions 3.7 Acknowledgements 4 Manuscript III Spatial patterns and growth sensitivity of larch stands in the Taimyr Depression 4.1 Abstract 4.2 Introduction 4.3 Methods 4.3.1 Study Area 4.3.2 Field data collection 4.3.3 Spatial point patterns 4.3.4 Dendrological approach 4.4 Results 4.4.1 Spatial patterns 4.4.2 Tree growth 4.5 Discussion 4.5.1 Spatial patterns 4.5.2 Tree chronology characteristics 4.6 Conclusion 5 Manuscript IV Patterns of larch stands under different disturbance regimes in the lower Kolyma River area (Russian Far East) 5.1 Abstract 5.2 Introduction 5.3 Methods 5.3.1 Study area and field data collection 5.3.2 Site description 5.3.3 Dendrochronological approach 5.3.4 Statistical analyses 5.4 Results 5.4.1 General stand characteristics and age structure 5.4.2 Spatial patterns 5.5 Discussion 5.5.1 Fire related disturbances 5.5.2 Water-related disturbances: lake drainage, flooding, polygon development 5.5.3 Implications and conclusion 6 Synthesis and Discussion 6.1 Assessment of applied methods 6.1.1 Field-based observations: 6.1.2 Modelling 6.2 Overview of larch stand structures and spatial pattern on different spatial scales 6.2.1 Recent stand structures 6.2.2 Spatial Patterns 6.3 Stand structure drivers and treeline changes 6.3.1 Climate change 6.3.2 Disturbances 6.3.3 Autecology 6.4 Conclusion 6.5 Outlook 7 Appendix 7.1 Supplementary information for Manuscript I 7.2 Supplementary information for Manuscript II 7.2.1 Manuscript II: Appendix 1. Climatic information for the study region 7.2.2 Manuscript II: Appendix 2. Plot-specific values and krummholz appearance 7.2.3 Manuscript II: Appendix 3. Regression analysis for age data 7.2.4 Manuscript II: Appendix 4. Model description 7.3 Supplementary information for Manuscript III 7.4 Supplementary information for Manuscript IV 7.5 Supplementary information 8 References Danksagung Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2017-01-01
    Print ISSN: 0379-6779
    Electronic ISSN: 1879-3290
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...