ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hennige, Sebastian; Wicks, L C; Kamenos, N A; Bakker, Dorothee C E; Findlay, Helen S; Dumousseaud, Cynthia; Roberts, J Murray (2014): Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 27-35, https://doi.org/10.1016/j.dsr2.2013.07.005
    Publication Date: 2024-03-15
    Description: Cold-water corals are amongst the most three-dimensionally complex deep-sea habitats known and are associated with high local biodiversity. Despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has already decreased from 8.2 to ~ 8.1. Predicted CO2 emissions will decrease this by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Data here relate to a short term data set (21 days) on metabolism and net calcification rates of freshly collected L. pertusa from Mingulay Reef Complex, Scotland. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Alkalinity anomaly technique (Smith and Key, 1975); Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; Incubation duration; Laboratory experiment; Lophelia pertusa; Mingulayreef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Polyp number; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Respiration rate, oxygen, standard error; Salinity; Single species; Species; Temperate; Temperature, water; Tissue, dry mass; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 1107 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Area; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Breaking load; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Diameter; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Group; Growth/Morphology; Height; Height/width ratio; Identification; Incubation duration; Laboratory experiment; Lophelia pertusa; Mingulayreef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peak area; Peak centre; Peak height; Percentage; pH; pH, standard deviation; Potentiometric titration; Ratio; Registration number of species; Replicate; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Thickness; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 9135 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12 °C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56°49' N, 07°23' W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dimethyl sulfide + dimethylsulfoniopropionate; Dimethylsulfoniopropionate, intracellular; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared spectrometric; Laboratory experiment; Lophelia pertusa; Mingulay_Reef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Potentiometric titration; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time in days; Treatment; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 1114 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Céline; Wicks, L C; Roberts, J Murray (2016): Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ, 4, e1606, https://doi.org/10.7717/peerj.1606
    Publication Date: 2024-03-15
    Description: Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for 8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium, excretion; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Deep-sea; Desmophyllum dianthus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Mediterranean Sea; Net calcification rate of calcium carbonate; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Replicate; Respiration; Respiration rate, carbon; Salinity; Salinity, standard deviation; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 432 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2011-11-26
    Print ISSN: 0722-4028
    Electronic ISSN: 1432-0975
    Topics: Biology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-23
    Print ISSN: 0722-4028
    Electronic ISSN: 1432-0975
    Topics: Biology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...