ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Sedimentology 49 (2002), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Large-scale explosive eruptions from silicic caldera volcanoes can generate huge volumes of pyroclastic material in terrestrial and marine environments. On land, erosion, remobilization and redeposition of this debris is predominantly carried out by running water in the form of precipitation run-off. Conversely, in the submarine realm, both primary emplacement and subsequent remobilization are influenced by the presence of water as a transporting medium. Despite this, and the number of studies devoted to volcaniclastic sedimentation, relatively little attention has been paid to the hydrodynamic behaviour of the particles themselves, which ought to underpin any assessment of transport or depositional process. This is crucial, as many volcanic particles exhibit variable density: according to composition and as functions of differing degrees of vesiculation and the extent to which pore space is filled by water and/or gaseous phases during transport and deposition. Investigation of the physical and hydrodynamic properties of Taupo 1800a pumice, with reference to sedimentary facies developed during the eruption aftermath, shows that, although buoyant when dry, when sufficiently waterlogged, cool pumice clasts will sink and behave more like quartzo-feldspathic material. Saturation is apparently achieved by a combination of rapid capillary flooding of large interconnected vesicles and slower diffusional air–water exchange in smaller pores. Low saturated pumice densities result in lower settling velocities and easier entrainment by tractional currents than those for equivalent-sized quartzo-feldspathic or crystal/lithic particles. Fine-grained pumice is conversely harder to entrain because of the frictional interlocking of angular particles. These unusual properties of temporary buoyancy, variable saturation, low density and size-dependent cohesion complicate interpretations of the depositional setting and energy of pumiceous sediments and give rise to several unique facies. These findings have implications not only for the analysis of remobilized pyroclastic facies in terrestrial and marine environments, but also for primary depositional processes during subaqueous explosive volcanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Stratovolcano Explosive volcanism Tephra remobilisation Lahars Ruapehu Volcanic hazards
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract. A feature of small-scale explosive volcanism at stratovolcanoes is the rapid destruction of primary near-vent pyroclastic deposits by sedimentary processes. A protracted series of explosive eruptions of moderate volume from September 1995 until July 1996 at Mount Ruapehu in New Zealand, its largest eruptive episode this century, afforded an opportunity to study these remobilisation processes in detail. All significant sub-plinian eruptions occurred in mid-winter, forming metre-thick tephra accumulations on steep slopes covered with perennial ice and seasonal snow. Subsequent events demonstrated the variety and complexity of the erosion processes that remobilise primary pyroclasts in such a setting. These processes arose from the complex interactions of tephra with snow and ice, and liquid water in varying proportions, and were very diverse in nature and scale. Their effectiveness can be gauged from the fact that there is almost no stratigraphic record of any of the 〉40 eruption episodes recorded in the past 100 years at Ruapehu. Syn-eruptive remobilisation processes included the generation of eruption-triggered lahars by the ejection of hot water from the Crater Lake. Post-eruptive interactions mainly remobilised fall deposits from proximal areas, and included rain-triggered lahars, which were among the largest and most hazardous events with the greatest distal impacts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-01-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-15
    Description: Recent observations have shattered the long-held theory that deep-sea (〉500 m) explosive eruptions are impossible; however, determining the dynamics of unobserved eruptions requires interpretation of the deposits they produce. For accurate interpretation to be possible, the relative abilities of explosive magmatic degassing and non-explosive magma–water interaction to produce characteristic submarine volcaniclastic particles such as ‘limu o Pele’ (bubble wall shards of glass) must be established. We experimentally address this problem by pouring remelted basalt (1300 °C, anhydrous) into a transparent, water-filled reservoir, recording the interaction with a high-speed video camera and applying existing heat transfer models. We performed the experiments under moderate to high degrees of water subcooling (~8 l of water at 58 and 3 °C), with ~0.1 to 0.15 kg of melt poured at ~10 –2 kg s –1 . Videos show the non-explosive, hydromagmatic blowing and bursting of isolated melt bubbles to form limu o Pele particles that are indistinguishable from those found in submarine volcaniclastic deposits. Pool boiling around growing melt bubbles progresses from metastable vapour film insulation, through vapour film retraction/collapse, to direct melt-water contact. These stages are linked to the evolution of melt-water heat transfer to verify the inverse relationship between vapour film stability and the degree of water subcooling. The direct contact stage in particular explains the extremely rapid quench rates determined from glass relaxation speedometry for natural limu. Since our experimentally produced limu is made entirely by the entrapping of ambient water in degassed basaltic melt, we argue that the presence of fast-quenched limu o Pele in natural deposits is not diagnostic of volatile-driven explosive eruptions. This must be taken into account if submarine eruption dynamics are to be accurately inferred from the deposits and particles they produce.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-02
    Description: Maar–diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar–diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar–diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. It is not possible to infer the energies of single blasts in multiple-blast series from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation. Supplementary materials: Five video files, 12 figures and three tables are available at http://www.geolsoc.org.uk/SUP18890 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2016-02-24
    Description: It is established that Surtseyan eruptions involve extensive magma-water interaction, but the specific volumes, geometries, and dynamic consequences of such interaction have not been precisely characterized. Textural studies seeking to understand phreatomagmatism have mainly focused on fine ash—an approach that is intuitive given the abundance of fine particles in Surtseyan deposits, but that neglects additional information preserved in coarser particles. Virtually without exception, scoria bombs from Surtsey (Iceland) and similar volcanoes show composite textures, with host material having entrained smaller clasts. Entrained clasts commonly show evidence of post-entrapment groundmass crystallization, and always are surrounded by void space indicating that they were wet at the time of entrapment. The composite textures—ubiquitous in bombs but also common in lapilli—support a classical model that describes Surtseyan volcanism as being driven by mingling of magma and water-saturated slurry in periodically flooded vents. We use textures, eruption observations, and basic thermodynamics to expand the magma-slurry model and relate it directly to the vapor dynamics that characterize Surtseyan jets and plumes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-15
    Description: Maar–diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar–diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar–diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. It is not possible to infer the energies of single blasts in multiple-blast series from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation. Supplementary materials: Five video files, 12 figures and three tables are available at http://www.geolsoc.org.uk/SUP18890 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-08
    Description: Fragmentation processes in eruptions are commonly contrasted as phreatomagmatic or magmatic; the latter requires only fragmentation of magma without external intervention, but often carries the connotation of disruption by bubbles of magmatic gas. Phreatomagmatic fragmentation involves vaporization and expansion of water as steam with rapid cooling and/or quenching of the magma. It is common to assess whether a pyroclast formed by magmatic or phreatomagmatic fragmentation using particle vesicularity, shape of particles, and degree of quenching. It is widely known that none of these criteria is entirely diagnostic, so deposit features are also considered; welding and/or agglomeration, particle aggregation, lithic fragment abundance, and proportion of fines. Magmatic fragmentation yields from rhyolite pumice to obsidian to basaltic achneliths or carbonatitic globules, making direct argument for magmatic fragmentation difficult, so many have taken an alternative approach. They have tested for phreatomagmatism using the fingerprints listed above, and if the fingerprint is lacking, magmatic fragmentation is considered proven. We argue that this approach is invalid, and that the criteria used are typically incorrect or incorrectly applied. Instead, we must consider the balance of probabilities based on positive evidence only, and accept that for many deposits it may not be possible with present knowledge to make a conclusive determination.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-15
    Description: Diatremes are debris-filled structures beneath maars that result from many magma-water (phreatomagmatic) explosions during a monogenetic volcano’s lifetime. A long-standing model requires deepening explosions, due to water table drawdown, that eject progressively deeper-seated country rock from the explosion sites, while the overlying diatreme and its surface crater widen due to subsidence. A revised model is proposed wherein explosions can take place at any level within a diatreme at a given time, most effectively venting material from near-surface explosions. Deep-seated country rock lithics in tephra deposits record stepwise vertical mixing of material by upward-directed debris jets and downward subsidence, rather than direct ejection from deep explosions. Juvenile and lithic clasts erupted during a given explosion may have had a complex history within the diatreme and need not directly reflect fragmentation or brecciation during the explosion that ejects them.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-01
    Description: Pyroclastic density currents have been observed to both enter the sea, and to travel over water for tens of kilometers. Here, we identified a 1.2-m-thick, stratified pumice lapilli-ash cored at Site U1396 offshore Montserrat (Integrated Ocean Drilling Program [IODP] Expedition 340) as being the first deposit to provide evidence that it was formed by submarine deposition from pumice-rich pyroclastic density currents that traveled above the water surface. The age of the submarine deposit is ca. 4 Ma, and its magma source is similar to those for much younger Soufrière Hills deposits, indicating that the island experienced large-magnitude, subaerial caldera-forming explosive eruptions much earlier than recorded in land deposits. The deposit’s combined sedimentological characteristics are incompatible with deposition from a submarine eruption, pyroclastic fall over water, or a submarine seafloor-hugging turbidity current derived from a subaerial pyroclastic density current that entered water at the shoreline. The stratified pumice lapilli-ash unit can be subdivided into at least three depositional units, with the lowermost one being clast supported. The unit contains grains in five separate size modes and has a 〉12 phi range. Particles are chiefly subrounded pumice clasts, lithic clasts, crystal fragments, and glass shards. Pumice clasts are very poorly segregated from other particle types, and lithic clasts occur throughout the deposit; fine particles are weakly density graded. We interpret the unit to record multiple closely spaced (〈2 d) hot pyroclastic density currents that flowed over the ocean, releasing pyroclasts onto the water surface, and settling of the various pyroclasts into the water column. Our settling and hot and cold flotation experiments show that waterlogging of pumice clasts at the water surface would have been immediate. The overall poor hydraulic sorting of the deposit resulted from mixing of particles from multiple pulses of vertical settling in the water column, attesting to complex sedimentation. Slow-settling particles were deposited on the seafloor together with faster-descending particles that were delivered at the water surface by subsequent pyroclastic flows. The final sediment pulses were eventually deflected upon their arrival on the seafloor and were deposited in laterally continuous facies. This study emphasizes the interaction between products of explosive volcanism and the ocean and discusses sedimentological complexities and hydrodynamics associated with particle delivery to water.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...