ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-12
    Description: The geologic framework controls on modern barrier island transgression and the relationship of these controls to subsurface structure, hydrology and island geomorphology are not well understood. Recent evidence suggests that alongshore variations in pre-Holocene geology of barrier islands modify nearshore hydrodynamic processes and sediment transport, ultimately affecting how barrier islands will respond to relative sea-level rise. Explorations of Holocene barrier island geology are usually based on cores to supplement bathymetric, onshore/offshore seismic and/or ground-penetrating radar (GPR) surveys. The advantages and limitations of these methods with respect to barrier island investigations are briefly described in this review. Alternative near-surface geophysical methods including electromagnetic induction (EMI) sensors are increasingly being used for coastal research because they are non-invasive, provide continuous subsurface information across a variety of sub-environments, and are capable of characterizing large areas in a short time. Although these EMI sensors have shown promise in coastal applications, a number of issues primarily related to subsurface hydrology need to be addressed to fully assess the limitations of this technique. This paper reviews the theory, methodology and applications of EMI in support of geologic framework studies with particular reference to barrier islands. Resolution of these issues will allow EMI sensors to complement and offer significant advantages over traditional methods in support of an improved understanding of large-scale barrier island evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-17
    Description: The MARCAN project, launched last January, is working to fill a gap in our knowledge of how freshwater flowing underground shapes and alters the continental margins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    facet.materialart.
    Springer
    In:  In: Barrier Dynamics and Response to Changing Climate. , ed. by Moore, L. and Murray, A. Springer, Cham, pp. 175-207.
    Publication Date: 2018-01-22
    Description: The height, volume, and alongshore extent of the foredune are primary controls on the response of barrier islands to the elevated storm surge that accompanies hurricanes and extra-tropical storms. In this respect, the ability of the foredune to recover following a storm determines whether a barrier island can maintain elevation as sea level rises and the island migrates landward through the redistribution of sediment to the back of the island through washover and breaching. This chapter provides a review of a body of recent fieldwork on the role of the foredune in controlling island transgression. It is argued that the role of the foredune to control washover and island transgression is analogous to that of a variable resistor in an electrical circuit, with the strength of the resistor dependent on the ability of the dune to recover in height and extent following each storm. Recovery of the foredune requires that sediment removed to the nearshore during a storm be returned to the beachface through the landward migration and welding of the innermost bars where it is eventually transported to the backshore and trapped by vegetation. Field observations from Padre Island in Texas, Santa Rosa Island in Florida, and Assateague Island in Virginia suggest that the recovery of dune height can be modeled using a sigmoidal growth curve, and that recovery can take up to a decade. The slow rate of dune recovery suggests that the resiliency of barrier islands to sea level rise is dependent on whether there is a change in the frequency and magnitude of storm events or an interruption to the exchange of sediment among the nearshore, beach, and dune. Ultimately, the height and volume of the foredune can be controlled by the framework geology (to varying degrees), which determines beach and nearshore state through the availability and texture of sediment and structural controls. In this respect, the response of barrier islands to sea level rise can be expected to vary regionally and alongshore as a reflection of diverse framework geology. The local response to sea level rise depends on the ability of the dune to recover following storms. Assuming no new sediment from alongshore or offshore sources, an increase in the frequency of washover will limit the ability of the dune to recover, and recent field evidence suggests that a change in dune height and volume is self-reinforcing, which suggests a lack of island resiliency. Further testing is required to determine how the field observations and modeling described in this chapter from a select group of barrier islands around the United States are applicable to other islands and consistent throughout the evolution of a barrier island.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-12
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-28
    Description: Protodunes emerge from a flat sand bed at the upwind margin of White Sands Dune Field, and, over several hundred meters, transition into fully developed dunes. Here, we investigate spatial and temporal changes in topography across this transition from 2007 to 2016 using lidar-derived topography, structure-from-motion-derived topography, and RTK GPS. We characterize the deposits present in 2015 using ground penetrating radar. Symmetric protodunes give way downwind to an asymmetric protodune at the transition to slipface development. Between 2007 and 2016, protodune amplitude increased from 0.2 m to 4.0 m, migration rate increased from 3.2 m/yr to 6.1 m/yr, and wavelength increased from 76 m to 122 m. Ground-penetrating radar surveys show strata between flat and 15° make up the stratigraphic architecture of the protodunes. Strata increase in steepness commensurate with an increase in amplitude. Decimeter accumulations of low-angle strata associated with initial protodune stages give way to 4 m of accumulation composed of sets up to 1 m thick prior to slipface development. Topsets present in the thickest sets indicate near critical angles of bedform climb. Growth and slipface development occur by aerodynamic sand trapping and protodune merging. Changes in asymmetry erase initial slipfaces prior to permanent slipface development, after which efficient sand trapping and scour promotes the transition to a dune across 20 m in 5 years. Protodune stratification has hallmarks of sandsheet stratification and can be appreciated within the greater suite of processes that create low-angle eolian stratification found in modern and ancient environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    facet.materialart.
    In:  [Invited talk] In: EGU General Assembly 2017, 23.-28.04.2017, Vienna, Austria .
    Publication Date: 2019-01-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-08
    Description: Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be described in the wavenumber domain by a power law characteristic of scale-independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations of the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, USA, reveal that the EMI apparent conductivity σa signal and, by inference, the framework geology exhibits LRD at scales up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and LiDAR spatial series by a fractional auto-regressive integrated moving average process that specifically models LRD. This method offers a robust and compact way for quantifying the geological variations along a barrier island shoreline using three parameters (p,d,q). We discuss how ARIMA (0,d,0) models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first order control on dune height. The exchange of sediment amongst nearshore, beach and dune in areas outside this region are scale-independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    facet.materialart.
    Elsevier
    In:  In: Principles and Dynamics of the Critical Zone. , ed. by Giardino, J. R. and Houser, C. Developments in earth surface processes, 19 . Elsevier, Amsterdam, Netherlands, pp. 497-522.
    Publication Date: 2018-09-07
    Description: Barrier Islands represent some of the most dynamic and complex systems within the Critical Zone worldwide. Although coastal systems tend not to be recognized as Critical Zone environments, the evolution of Barrier Islands and the ecological functions they provide can be characterized in terms of a complex feedback among sediment supply (lithosphere), hydrology, the atmosphere, and ecology (biosphere). This represents an interesting departure from the traditional view of Barrier Island evolution (either regression or transgression) as a result of variations in sea level, sediment supply, and accommodation space. This chapter takes a Critical Zone approach to the response of Barrier Island evolution to sea-level rise and storm activity, explicitly recognizing the feedback among sediment supply, aeolian transport, disturbance regimes, vegetation development, and hydrology.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-12
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...