ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 1573-515X
    Keywords: acidic deposition ; surficial geology ; flow paths
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The chemistry of lakes and streams within the North Branch of the Moose River is strongly correlated with the nature and distrubution of geologic materials in the watershed. The dominance of thin glacial till and granitic gneiss bedrock in the region north and east of Big Moose Lake results in a geologically sensitive terrain that is characterized by surface water with low alkalinity and chemical compositions only slightly modified from ambient precipitation. In contrast, extensive deposits of thick glacial till and stratified drift in the lower part of the system (e.g. Moss-Cascade valley) allow for much infiltration of precipitation to the groundwater system where weathering reactions increase alkalinity and significantly alter water chemistry. The hypothesis that surficial geology controls the chemistry of surface waters in the Adirondacks holds true for 70 percent of the Moose River watershed. Exceptions include the Windfall Pond subcatchment which is predominantly covered by thin till, yet has a high surface water alkalinity due to the presence of carbonate-bearing bedrock. The rapid reaction rates of carbonate minerals allow for complete acid neutralization to occur despite the short residence time of water moving through the system. Another important source of alkalinity in at least one of the subcatchments is sulfate reduction. This process appears to be most important in systems containing extensive peat deposits. An analysis of only those subcatchments controlled by the thickness of surficial sediments indicates that under current atmospheric loadings watersheds containing less than 3 percent thick surficial sediments will be acidic while those with up to 12 percent will be extremely sensitive to acidification and only those with over 50 percent will have a low sensitivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-02-01
    Print ISSN: 0168-2563
    Electronic ISSN: 1573-515X
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...