ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 13 (1996), S. 1276-1278 
    ISSN: 1573-904X
    Keywords: 5-FU ; choroid plexus ; nucleobase ; transport ; nucleoside
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 15 (1998), S. 1145-1147 
    ISSN: 1573-904X
    Keywords: nucleosides ; transport ; choroid ; plexus ; human ; HIV
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: nucleoside ; nucleoside transport ; brush border membrane vesicles ; sodium ion dependence ; adenosine, (human kidney)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The therapeutic efficacy of nucleosides and nucleoside analogues as antitumor, antiviral, antiparasitic, and antiarrhythmic agents has been well documented. Pharmacokinetic studies suggest that many of these compounds are actively transported in the kidney. The goal of this study was to determine if therapeutically relevant nucleosides or analogues interact with the recently characterized Na+-driven nucleoside transport system of the brush border membrane of the human kidney. Brush border membrane vesicles (BBMV) were prepared from human kidney by divalent cation precipitation and differential centrifugation. The initial Na+-driven 3H-uridine uptake into vesicles was determined by rapid filtration. The effect of several naturally occurring nucleosides (cytidine, thymidine, adenosine), a pyrimidine base (uracil), a nucleotide (UMP), and several synthetic nucleoside analogues [zidovudine (AZT), cytarabine (Ara-C), and dideoxycytidine (ddC)] on Na+–uridine transport was determined. At a concentration of 100 µM the naturally occurring nucleosides, uracil, and UMP significantly inhibited Na+-uridine transport, whereas the three synthetic nucleoside analogues did not. Adenosine competitively inhibited Na+-uridine uptake with a K i of 26.4 µM (determined by constructing a Dixon plot). These data suggest that naturally occurring nucleosides are substrates of the Na+–nucleoside transport system in the renal brush border membrane, whereas synthetic nucleoside analogues with modifications on the ribose ring are not. The K i of adenosine is higher than clinically observed concentrations and suggests that the system may play a physiologic role in the disposition of this nucleoside.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-07
    Description: Background: Sickle cell disease (SCD) is caused by polymerization of hemoglobin S (HbS), resulting in hemolysis and vaso-occlusion. Currently, no therapy achieving direct pancellular inhibition of HbS polymerization is available for adults or children with SCD. GBT440 is an oral, once-daily novel small molecule inhibitor which increases hemoglobin oxygen affinity, thereby preventing HbS polymerization and red blood cell sickling. Study GBT440-007 was designed to evaluate the safety, treatment response and pharmacokinetics (PK) of GBT440 in a pediatric population (6 to 17 years of age). This single dose, safety and PK study represents the first evaluation of GBT440 in children with SCD (6 to 11 years of age) and is designed to estimate the appropriate clinical dose of GBT440 in children in this age range. Methods: This is an ongoing, open-label, Phase 2a study in pediatrics (6 to 17 years of age) with SCD (HbSS or HbSβ0 thalassemia). This study is being conducted in 2 parts: Part A, single-dose (GBT440 600 mg) and Part B, multiple-dose (GBT440 900 mg and 1500 mg) for 24 weeks. The primary objective of Part A is PK and the primary objectives of Part B are treatment response and safety. This abstract focuses on results from Part A in children (6 to 11 years of age). PK samples to measure whole blood and plasma GBT440 concentrations were collected up to 15 days postdose following a single oral dose of GBT440 600 mg. Population PK (PPK) models of whole blood and plasma data will be developed using non-linear mixed effects modeling (NONMEM) to identify GBT440 dosing regimens for pediatric populations with SCD. In addition, developmental physiology (liver size, renal function, liver blood flow) and biochemistry (hematocrit, albumin, cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) ontogeny) will be integrated within a physiologically-based PK (PBPK) model to determine the exposures of GBT440 and help support dose selection in children (9 months to
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-07
    Description: Background: Sickle cell disease (SCD) is a genetic disorder in which deoxygenation produces polymerization of mutated hemoglobin S (HbS) and triggers the downstream effects of red blood cell deformation (sickling), hemolysis, vaso-occlusion and inflammation. Injury from SCD starts in infancy and accumulates over a lifetime causing significant end-organ damage and ischemic tissue injury, leading to fatigue, pain (vaso-occlusive crisis) and other clinical complications that are under-recognized, under-treated, and associated with early death. GBT440 is an oral, once-daily therapy that modulates hemoglobin affinity for oxygen, thereby inhibiting hemoglobin polymerization. GBT440-007 is a Phase 2a study designed to assess the safety, pharmacokinetics (PK) and efficacy of GBT440 in pediatric SCD patients (HbSS or HbSβ0 thalassemia). This abstract reports the first evaluation of multiple doses of GBT440 in adolescents (12 to 17 years) with SCD. Methods: This ongoing study is being conducted in 2 parts, Part A: single dose of GBT440 at 600 mg in pediatric patients (6 to 11 years) and adolescents (12 to 17 years) and Part B: multiple doses of GBT440 at 2 dose levels, 900 mg/d and 1500 mg/d for 24 weeks in adolescents (approximately 12 patients at each dose). Part A PK data in adolescents was previously reported. The primary objective of Part B is to assess the effect of GBT440 on anemia. Secondary objectives include effect on clinical measures of hemolysis, PK (PK parameters determined using population PK analysis), cerebral blood flow as assessed by transcranial Doppler ultrasound (TCD), daily SCD symptoms using a patient-reported outcome (PRO) measure and safety. The PRO Sickle Cell Disease Severity Measure (SCDSM) was developed following FDA guidance as a clinical outcomes assessment. Results: Enrollment in Part B of the 900 mg cohort is complete. As of 21July2017, 13 patients (7 females) have received GBT440 for up to 12 weeks. The median age was 13 years (range 12 to 17 years) and median weight 52 kg (range 30 to 96 kg); 92% were on hydroxyurea (HU); 38% had 2 or more painful crises (range 2 to 8) in the year prior to enrollment. Data for measures of hemolysis and TCD are available for 4 patients who received GBT440 for 12 weeks; all were receiving HU at study entry. Three of the 4 patients achieved hemoglobin (Hb) response of 〉 1 g/dl increase (Figure 1); one patient had a smaller Hb increase with documented non-adherence with study medication and associated lower GBT440 exposures. Clinical measures of hemolysis improved concordantly; median reduction in reticulocytes and indirect bilirubin were 34% and 27% respectively, consistent with previously reported results of GBT440 in adults with SCD. Preliminary data following multiple doses of GBT440 suggest that the PK in adolescents were similar to those observed in adults with SCD. Baseline TCD velocity ranged from 89 to 150 cm/s in 13 patients. One patient at 12 weeks had a decline in TCD velocity from baseline of 22 cm/s, and 3 patients showed small reductions. Empirical distribution functions of the SCDSM questionnaires indicate total symptom scores (TSS) trended lower post dose in comparison to screening (Figure 2). All treatment-related adverse events (AEs) were Grade 1 or 2 and there were no treatment- related serious adverse events or no drug discontinuations due to AEs. The most common treatment emergent AEs were Grade 1 nausea and diarrhea reported in 2 patients. Data for all 13 patients treated with GBT440 for a minimum of 12 weeks will be presented at the conference. Conclusions: Based on preliminary results, treatment with GBT440 at 900 mg has been well tolerated in all 13 adolescents. Data from 4 adolescents at 12 weeks show a marked improvement in Hb and reduction in clinical measures of hemolysis. Importantly, hematologic improvements are seen in patients already maximally managed with hydroxyurea. TCD and PRO data suggest that TCD velocity (i.e. risk of stroke) and clinical symptoms may improve with GBT440 treatment. Overall, these results are consistent with in vivo inhibition of HbS polymerization by GBT440 and support the ongoing clinical evaluation of GBT440 as a potential disease-modifying therapy for SCD in an ongoing pivotal Phase 3 study. Figure Figure. Disclosures Hoppe: Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding. Inati: Novo Nordisk: Membership on an entity's Board of Directors or advisory committees. Piccone: Novartis Pharmaceuticals: Honoraria. Fong: Global Blood Therapeutics: Employment, Equity Ownership. Balaratnam: Global Blood Therapeutics: Employment, Equity Ownership. Dixon: Global Blood Therapeutics: Employment, Equity Ownership. Tonda: Global Blood Therapeutics: Employment, Equity Ownership. Washington: Global Blood Therapeutics: Employment, Equity Ownership. Yaron: Global Blood Therapeutics: Employment, Equity Ownership. Lehrer: Global Blood Therapeutics, Inc.: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...