ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002
    Keywords: Seismology ; Strong motions ; Broad-band ; Non-linear effects ; Site amplification ; Modelling ; USA ; Earthquake ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The determination of a reliable tortuosity index is lacking in the aerospace industry. Therefore, a methodology is formulated via direct and indirect characterization methods of a fluid-filled porous media. Chemical, thermal, and mechanical characterization was performed to the PolyuMACTM polyimide foam. Tortuosity was measured considering a pressure difference as the resistivity variable, rather than electrical resistivity or molecular diffusivity, as proposed on previous models. This is an empirical establishment of the tortuosity index considering the correlation among hydraulic and structural dimensionless parameters obtained through the Buckingham’s Pi theorem. The behavior of the polyimide was studied for samples of different lengths compressed at 30%, 60%, and 90% of its original length on the foaming direction. Results show that, porosity, sample length, and fluid viscosity are relevant for the insulation performance of the material. Regression analysis produced a significant statistical model fit to the data correlated from the dimensionless parameters for each dynamic compression series.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-17
    Description: In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-11
    Description: Aerospace, Vol. 5, Pages 41: AEROM: NASA’s Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software Aerospace doi: 10.3390/aerospace5020041 Authors: Walter Silva The origins, development, implementation, and application of AEROM, NASA’s patented reduced-order modeling (ROM) software, are presented. Using the NASA FUN3D computational fluid dynamic (CFD) code, full and ROM aeroelastic solutions are computed at several Mach numbers and presented in the form of root locus plots. The use of root locus plots will help reveal the aeroelastic root migrations with increasing dynamic pressure. The method and software have been applied successfully to several configurations including the Lockheed-Martin N+2 supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-tunnel model, among others. The software has been released to various organizations with applications that include CFD-based aeroelastic analyses and the rapid modeling of high-fidelity dynamic stability derivatives. We present recent results obtained from the application of the method to the AGARD 445.6 wing that reveal several interesting insights.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-07
    Description: Hydrology, Vol. 5, Pages 13: Dynamic Modeling of Surface Runoff and Storm Surge during Hurricane and Tropical Storm Events Hydrology doi: 10.3390/hydrology5010013 Authors: Walter Silva-Araya Félix Santiago-Collazo Juan González-López Javier Maldonado-Maldonado Hurricane events combine ocean storm surge penetration with inland runoff flooding. This article presents a new methodology to determine coastal flood levels caused by the combination of storm surge and surface runoff. The proposed approach couples the Simulating Waves Nearshore model and the Advanced Circulation (ADCIRC) model with the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) two-dimensional hydrologic model. Radar precipitation data in a 2D hydrologic model with a circulation model allows simulation of time and spatially varied conditions. The method was applied to study flooding scenarios occurring during the passage of Hurricane Georges (1998) on the east coast of Puerto Rico. The combination of storm surge and surface runoff produced a critical scenario, in terms of flood depth, at this location. The paper describes the data collection process, circulation and hydrologic models, their assemblage and simulation scenarios. Results show that peak flow from inland runoff and peak flow due to storm surge did not coincide in the coastal zone; however, the interaction of both discharges causes an aggravated hazardous condition by increasing flood levels beyond those obtained with storm surge penetration only. Linking of storm surge and hydrologic models are necessary when storm surge conditions occur simultaneously with high precipitation over steep and small coastal watersheds.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: The origins, development, implementation, and application of AEROM, NASA’s patented reduced-order modeling (ROM) software, are presented. Using the NASA FUN3D computational fluid dynamic (CFD) code, full and ROM aeroelastic solutions are computed at several Mach numbers and presented in the form of root locus plots. The use of root locus plots will help reveal the aeroelastic root migrations with increasing dynamic pressure. The method and software have been applied successfully to several configurations including the Lockheed-Martin N+2 supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-tunnel model, among others. The software has been released to various organizations with applications that include CFD-based aeroelastic analyses and the rapid modeling of high-fidelity dynamic stability derivatives. We present recent results obtained from the application of the method to the AGARD 445.6 wing that reveal several interesting insights.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: Hurricane events combine ocean storm surge penetration with inland runoff flooding. This article presents a new methodology to determine coastal flood levels caused by the combination of storm surge and surface runoff. The proposed approach couples the Simulating Waves Nearshore model and the Advanced Circulation (ADCIRC) model with the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) two-dimensional hydrologic model. Radar precipitation data in a 2D hydrologic model with a circulation model allows simulation of time and spatially varied conditions. The method was applied to study flooding scenarios occurring during the passage of Hurricane Georges (1998) on the east coast of Puerto Rico. The combination of storm surge and surface runoff produced a critical scenario, in terms of flood depth, at this location. The paper describes the data collection process, circulation and hydrologic models, their assemblage and simulation scenarios. Results show that peak flow from inland runoff and peak flow due to storm surge did not coincide in the coastal zone; however, the interaction of both discharges causes an aggravated hazardous condition by increasing flood levels beyond those obtained with storm surge penetration only. Linking of storm surge and hydrologic models are necessary when storm surge conditions occur simultaneously with high precipitation over steep and small coastal watersheds.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    ISSN: 1420-9136
    Keywords: Minning-induced seismicity ; implosional focal mechanism ; Gentry Mountain coal mines ; eastern Wasatch Plateau
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In the summer of 1984, a three-dimensional, high-resolution microearthquake network was operated in the vicinity of two coal mines beneath Gentry Mountain in the eastern Wasatch Plateau, Utah. During a six-week period, approximately 3,000 seismic events were observed of which the majority were impulsive, higher frequency (〉10 Hz), short duration (〈2–3 sec) events probably associated with the caving of the roof from a longwall operation. In contrast, 234 of the largest located events appeared to occur predominantlybeneath the mines to a depth of 2 to 3 km consistent with previous studies. The magnitudes of these events ranged from less thanM c 0 to 1.6. In addition to the unusual depths of these latter events, an anomalous aspect displayed by the events was an apparent dilatational focal mechanism suggesting a non-double-couple, possibly implosional source. Implosional events have been observed in other studies of mine seismicity; however, the generally inadequate instrumental coverage of the focal sphere has cast some doubt on the validity of such mechanisms. Previously suggested source mechanisms for such implosional events have included tensional failure through strata collapse, and a shear-implosional displacement mechanism. Shear failure must be involved in the failure process of the Gentry Mountain implosional events as evidenced by well-defined shear waves in the observed seismograms. Simultaneous monitoring in the East Mountain coal mining area to the south by the University of Utah revealed typical shear failure events mixed with implosional events. The observed double-couple, reverse focal mechanisms at East Mountain were similar to mechanisms determined in previous studies and a composite focal mechanism determined in this study for a sequence outside the mining areas. This suggested that the shear events within the mining areas are being influenced by the regional tectonic stress field. Thus in addition to the seismic events associated with caving of the roof from the longwall operation, there appear to be at least two other types of mining-induced seismic events occurring in the eastern Wasatch Plateau, both submine in origin: (1) events characterized by apparent non-double-couple possibly implosional focal mechanisms and well-defined shear waves; and (2) shear events, which are indistinguishable from tectonic earthquakes and may be considered mining “triggered” earthquakes. The small mining-induced stress changes that occur beyond a few hundred meters from the mine workings suggest both types of seismic events are occurring on critically stressed, pre-existing zones of weakness. Topography, overburden, method of mining, and mine configuration also appear to be significant factors influencing the occurrence of the implosional submine events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A pharmacological characterization has been performed of the opioid receptor involved in modulation of phagocytosis in the protozoan ciliate Tetrahymena. Studies on inhibition of phagocytosis by mammalian prototypic opioid agonists revealed that morphine and β-endorphin have the highest intrinsic activity, whereas all the other opioids tested can only be considered partial agonists. However, morphine (a mu-receptor agonist) is twice as potent as β-endorphin (a delta-receptor agonist). Furthermore, the sensitivity for the opioid antagonist naloxone, determined in the presence of morphine and β-endorphin, is very similar to the sensitivity exhibited by mammalian tissues rich in mu-opioid receptors. We suggest that the opioid receptor coupled to phagocytosis in Tetrahymena is mulike in some of its pharmacological characteristics and may serve as a model system for studies on opioid receptor function and evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...