ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-30
    Description: Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world not, vert, similar 112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate not, vert, similar 25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere–land–ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (not, vert, similar 45,000 yr) period of not, vert, similar 0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns, H.C., 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. The Royal Society, 361: 1885–1916.] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 × 1018 g methane carbon (δ13C = − 60 ‰), equivalent to about 10% to the total modern gas hydrate inventory, generated the δ13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over not, vert, similar 25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-04
    Description: Understanding the controls that determine the spatial distribution and internal heterogeneities of black shales in the Mesozoic ocean has been a focal point of research over many decades. The consensus is that atmosphere–land–ocean interactions influenced variations in marine biogeochemistry and sediment supply, thus exerting fundamental controls on the richness and quality of sedimentary organic matter (OM) and ultimately on petroleum source rock distribution and its generation potential. Internal, small-scale heterogeneities in black shales that have been reported from all ocean settings were often linked to orbitally-driven fluctuations in continental runoff and marine upwelling. The two processes are generically related under the ascending (tropical) and descending (subtropical) limbs of the palaeo-Hadley Cells, with fluctuations at variable time (seasonal, orbital, geological) and spatial (shelf, margin, deep basin) scales. These dynamic variations translate into characteristic patterns of OM quantity and quality, best preserved near the continents where the forcing effects are strongest. The expression of these orbital-scale interactions are not well constrained at the basin scale, however, they may hold a key to better understand the distribution of heterogeneities in black shales. This study presents a conceptual framework that links OM quality and quantity in Cretaceous Atlantic sediments with the dominant processes that operated under the Hadley Cells. Using a comprehensive compilation of bulk organic geochemical data – total organic carbon concentration (TOC), hydrogen index (HI), oxygen index (OI), and kerogen type – we explore how basic geochemical patterns can be used to identify the underlying generic processes. We utilise published and new data from deep ocean sites of the DSDP/ODP program, as well as one palaeo-shelf setting (Tarfaya), spanning a latitudinal transect from the outer subtropics to the palaeo-equator during the Albian, the Cenomanian–Turonian, and the Coniacian–Santonian. This study emphasises the potential of integrating orbital scale datasets and wide spatial coverage as a predictive tool for black shale formation across ocean basins.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: 4. International Conference on Paleoceanography (ICP IV), 21.09.-25.09.1992, Kiel .
    Publication Date: 2014-05-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-23
    Description: Various models of surface and deep-water circulation in the Norwegian-Greenland Sea (NGS) have been proposed for the last two glacial to interglacial transitions. Although much progress has been made in understanding the sedimentary response to climatic and oceanographic changes, conflicting interpretations have been developed. To clarify some of these discrepancies and to test or modify the existing circulation concepts, a multiparameter approach is applied, combining sedimentological, micropaleontological, organic-geochemical and isotopic methods. On the basis of indicative properties a combined litho- and organofacies concept is developed and calibrated with modern depositional settings beneath different surface water masses. Sedimentary regimes are then derived for glacial and deglacial settings. Atlantic water intrusions in the NGS reveal complex and highly dynamic patterns for the last two glacial and interglacial periods, with repetitive inflows during Isotope Stage 6 and a high variability in Isotope Stage 5. Specific facies patterns show maximum extensions of Atlantic Water intrusions during the climatic highstands 5.5.1, 5.3 and 5.1 and narrowest intrusions in the cool phases 5.4 and most pronounced in 5.2. In contrast, different glacio-marine depositional regimes depict variable sea ice coverage and supply of ice-rafted debris. Most conspicuous are short-term depositional events marked by diamictons, which are related to the high instabilities of continental ice sheets. Some of the diamictons seem to occur contemporaneously with Heinrich layers H1 and H2. The probable temporal and obvious phenomenological concidence of Heinrich layers and NGS diamictons suggests a common trigger mechanism which caused an almost simultaneous disintegration of huge continental ice masses along the shelves of North America and the eastern margin of the NGS. A previous estuarine circulation model claims regional upwelling along the eastern margin of the NGS for specific periods of the last deglaciation. The organic character of sediments covering the same time intervals show a clear predominance of reworked fossil organic matter and thus does not support the estuarine model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: The Lake Ontario drainage basin covers over 32,000 square miles of U.S. and Canadian territory. ERTS-1 data is contributing to the comprehensive study of this basin as part of the International Field Year for the Great Lakes (IFYGL). This paper details a processing approach for obtaining detailed and objective synoptic information thought to be applicable to terrestrial water balance studies of such a large area. A simple ratio algorithm was tested for minimizing daily variations in ERTS data and for allowing the discrimination of surface features and land use classes of hydrologic significance. These steps are necessary if ERTS data is to provide the quantitative information required for the study and management of areas of regional size.
    Keywords: GEOPHYSICS
    Type: PAPER-W15 , NASA. Goddard Space Flight Center Symp. on Significant Results obtained from the ERTS-1, Vol. 1, Sect. A and B; p 829-836
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Description: ERTS-1 data for application to hydrological and limnological problems of Lake Ontario and its basin
    Keywords: GEOPHYSICS
    Type: PAPER-W15 , E73-10269 , NASA. Goddard Space Flight Center Water Resources; p 88
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: LANDSAT data is seen as providing essential up-to-date resource information for the planning process. LANDSAT data of Mindoro Island in the Philippines was processed to provide thematic maps showing patterns of agriculture, forest cover, terrain, wetlands and water turbidity. A hybrid approach using both supervised and unsupervised classification techniques resulted in 30 different scene classes which were subsequently color-coded and mapped at a scale of 1:250,000. In addition, intensive image analysis is being carried out in evaluating the images. The images, maps, and aerial statistics are being used to provide data to seven technical departments in planning the economic development of Mindoro. Multispectral aircraft imagery was collected to compliment the application of LANDSAT data and validate the classification results.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Proc. of the 11th Intern. Symp. on Remote Sensing of Environment, Vol. 2; p 1375-1380
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...