ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Andalusite–staurolite–biotite hornfels metamorphosed beneath the mafic layered rocks of the Bushveld Complex, South Africa, preserves a detailed record of the relative timing of porphyroblast growth and metamorphic reactions. The sequence inferred from microstructures shows considerable overlap of the period of growth of porphyroblasts of staurolite, cordierite, biotite and andalusite, and the persistence over a similar interval of the reactant porphyroblastic phase chloritoid. This is inconsistent with calculations of equilibrium phase relations, and implies that disequilibrium processes controlled the prograde reaction sequence, despite the slow heating rates involved (1 °C per 10 000 yr). The early appearance of cordierite by a metastable reaction and its subsequent disappearance indicates that delayed nucleation of porphyroblastic phases, rather than simply sluggish reaction, is required to account for the sequence of growth. The predicted reactions for the first appearance of andalusite and staurolite have low entropy of reaction, and do not occur until they have been overtaken in terms of reaction affinity by high-entropy devolatilisation reactions involving the breakdown of chlorite. Once the porphyroblasts have nucleated, metastable chloritoid-breakdown reactions also contribute to their growth. The implied magnitude of the critical overstepping for andalusite nucleation is around 5 kJ mole−1 (equivalent to 40 °C for the chlorite-breakdown reaction), and that for other phases is expected to decrease in the order andalusite〉staurolite〉cordierite. Coupling between nucleation rate, crystal growth rates and the resulting grain size distribution suggests that the rate constants of natural reactions are at least an order of magnitude lower than those measured in the laboratory. Pseudomorphs after chloritoid and cordierite conserve volume but not Al or other species of low mobility, suggesting a breakdown mechanism controlled by an interface process such as the slow dissolution of the refractory porphyroblast phase, rather than by a transport step.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 19 (2001), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase-bearing assemblages under eclogite facies conditions. Coesite eclogites are found 〈200 m structurally above and 〈1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late-orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re-equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (〉 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 88 (1984), S. 269-275 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In a prograde amphibolite-granulite transition zone in the Namaqualand Metamorphic Complex, metapelites show an interbanding of the amphibolite facies association biotite+sillimanite+quartz with the granulite facies association garnet+cordierite+K-feldspar. Relict graded bedding shows that compositional banding is of sedimentary origin. The garnet-cordierite-K-feldspar gneisses contain quartzofeldspathic segregations surrounding garnets, and have more Fe-rich bulk compositions than the biotite-sillimanite schists. The contrasting asemblages could have formed at the same pressure and temperature provided that a(H2O) was systematically lower in the garnet-cordierite-K-feldspar layers. The a(H2O) reduction resulted from the production of silicate melt by a vapour-absent continuous Fe-Mg reaction such as biotite+sillimanite+quartz=garnet+K-feldspar+liquid which affects Fe-rich compositions before vapour-absent melting occurs in more Mg-rich rocks. The segregations represent the solid and liquid products of the reaction. Such processes imply local control of a(H2O), and indicate that this granulite transition did not result from a regional influx of metasomatising fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 91 (1985), S. 369-382 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Three kornerupine occurrences are reported in distinctive SiO2-poor, MgO- and Al2O3-rich paragneisses from the Namaqualand Metamorphic Complex in South Africa. Kornerupine coexists stably with phlogopite, cordierite, orthopyroxene, gedrite, sapphirine, sillimanite and plagioclase and, in sapphirine-free rocks, with spinel and corundum. Tourmaline of a texturally older generation than kornerupine is commonly present in the same samples. Ten analysed kornerupines show a variation in total Fe as FeO from 1.8 to 10.9 weight per cent. B2O3 contents are estimated from x-ray data and a few spectrochemical analyses to range from 0.9 to 3.5 weight per cent. There is a strong inverse correlation between B3+ and Al3+. Total iron content has a strong and systematic effect on refractive index, colour and dispersion. Fe and Mg are systematically partitioned with the other minerals, and Mg/(Mg+Fe) ratios increase as follows: spinel 〈gedrite≈orthopyroxene〈 sapphirine ≈kornerupine≈tourmaline≈phlogopite〈cordierite. Kornerupine commonly forms rims on sapphirine or sapphirine-cordierite aggregates, idioblastic prisms in phlogopite, or coarse intergrowths with gedrite or orthopyroxene. Kornerupine probably grew at, or shortly after, a metamorphic climax under granulite-facies conditions of 750°–800° C and 4 to 6.5 kbar. Late formation and good crystal shape suggest a model for kornerupine development in which fluids provided a medium for the redistribution of mobile species (including boron) and caused the stabilization of kornerupine rather than tourmaline as the boron-bearing silicate in these rocks. A possible source of fluids at an appropriate stage in the metamorphic development is from crystallizing migmatite leucosomes in adjacent metapelitic and biotite gneisses. The unusual bulk compositions of these gneisses are interpreted to result from the isochemical metamorphism of a Mg-Al-rich, locally boron-bearing, sedimentary precursor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 124 (1996), S. 383-394 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Thermodynamic modelling of (1) osumilite solid solutions and (2) dehydration melting in pelitic compositions within the KFMASH system is quite successful in reproducing the invariant and univariant reactions determined in experimental studies. Even though rather preliminary, such melt thermodynamic models may be very useful in interpolating and extrapolating the limited information available from a small number of experimental runs. These methods allow the compositions of all phases to be monitored as a function of pressure, temperature and equilibrium phase assemblage for any desired bulk composition. Locating the higher variance phase fields (e.g. quadrivariant, quinivariant) is often difficult or impossible by inspection, but is made relatively easy using thermodynamic software such as thermocalc. In the KFMASH system the calculated partition of Fe and Mg between osumilite, garnet, cordierite, orthopyroxene and biotite are shown to be in good agreement with experimental and natural data and allow reliable calculation of mineral compositions coexisting with quartz-saturated and H2O-undersaturated melts for a variety of bulk compositions. These phase diagram calculations allow quite tight limits to be placed on the pressure, temperature and water activity conditions which accompanied metamorphism of natural osumilite occurrences in Nain, Namaqualand, and Rogaland. At fixed bulk composition, the initial melting of pelites by dehydration of biotite can occur via univariant, divariant or trivariant equilibria depending upon pressure of metamorphism. Of particular interest is that, for low pressures or more magnesian bulk compositions, fluid-absent melting begins by generating liquid from the high-variance assemblage biotite+cordierite+K-feldspar+ quartz. This type of modelling allows investigation, at least qualitatively, of the fine scale details of melt production as a function of changes in pressure, temperature and bulk composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-01-01
    Description: Two end-member models have been proposed to account for the structure and metamorphism of rocks beneath the Semail ophiolite in the Oman mountains. Model A involves a single, continuous NE-directed subduction away from the continental margin during the late Cretaceous. The ophiolite and underlying thrust sheets of distal to proximal oceanic sediments were emplaced a minimum of 250 km SW onto the continental margin. Subduction of Triassic-Jurassic oceanic basalts to c. 10 kbar (c. 39 km depth) led to the accretion of amphibolite-facies rocks to the base of the ophiolite. Thrusting propagated towards the continental margin and ended with subduction of the thinned continental crust to c. 20 kbar (c. 78 km depth), choking the subduction zone. Buoyancy forces caused the rapid exhumation of eclogites, blueschists and carpholite-grade HP rocks along the NE margin of the continental plate. During the later phase of foreland-propagating thin-skinned thrusting in the SW, NE-facing backfolding and backthrusting occurred in the hinterland, with the final exhumation of the HP rocks. Model B follows recent suggestions that a nascent SW-dipping subduction zone, dipping beneath the continental margin, existed between 130 and 95 Ma, prior to formation and emplacement of the ophiolite. A major NE-facing fold-nappe structure in the pre-Permian basement rocks of Saih Hatat is interpreted as reflecting subduction beneath the margin. Two high-pressure metamorphic events have been suggested, the first predating ophiolite emplacement, the second caused by ophiolite loading. This model is untenable, being based on a misinterpretation of the NE-facing structures in northern Saih Hatat, and on some dubious older 40Ar/39Ar cooling ages from the eclogite-facies rocks of As Sifah. We conclude that all structures in northern Oman and all the reliable geochronology point to a single emplacement-obduction event lasting from Cenomanian-Turonian time (c. 95 Ma) when amphibolites were accreted along the metamorphic sole of the ophiolite, to Campanian time, when the continental margin was subducted to the NE producing blueschists and eclogites, to the final thin-skinned emplacement of all thrust sheets, which ended before the Late Maastrichtian, at c. 68 Ma.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-16
    Description: Gold mineralization at the Damang deposit is unique among currently known orogenic gold deposits in Ghana, comprising gold hosted within metasediments of the Tarkwaian System and contained in a subhorizontal, extensional quartz vein array that formed during regional compression. The Damang region has an extended paragenesis involving numerous structural, metamorphic, igneous, and metasomatic events. Orogenic gold mineralization occurred late in the geologic paragenesis at Damang, postdating regional metamorphism and an earlier episode of hydrothermal alteration, locally termed "pink hematite" alteration, associated with the intrusion of mafic sills and dikes. This earlier pink hematite alteration event involves extensive silicification that changed the rheology of the altered rocks and promoted later fracturing. Following peak regional metamorphism at around 2005 Ma, the Damang region underwent a short period of rapid exhumation, as constrained through numerical thermal modeling of existing pressure-temperature-time data. This exhumation triggered the generation of a subhorizontal fracture array that was fed by fluids released through decompression-driven metamorphic devolatilization. The interaction between these fluids and the host rock resulted in precipitation of gold in association with sulfide-carbonate-potassic alteration halos around quartz veins. Such postpeak metamorphic, exhumation-driven, devolatilization is unlikely to be a singular occurrence and represents a potentially important source of fluid for orogenic gold deposits elsewhere in Ghana, West Africa, and globally.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-02
    Description: The Cretaceous Semail ophiolite (northern Oman and the United Arab Emirates) includes an intact thrust slice of Tethyan oceanic crust and upper mantle formed above a northeast-dipping subduction zone that was the site of initiation of obduction. The normal metamorphic sole of the Semail ophiolite comprises a highly condensed sequence of hornblende + plagioclase ± garnet amphibolites with small enclaves of garnet + clinopyroxene granulites immediately beneath the mantle sequence peridotites, tectonically underlain by a series of epidote amphibolite and greenschist facies lithologies in a highly deformed ductile shear zone. Peak metamorphic conditions of 770–900 °C and 11–15 kbar indicate metamorphism at depths far greater than can be accounted for by the preserved thickness of the ophiolite (~15 km). In the mountains of northern Oman, the 1.2-km-thick Bani Hamid thrust sheet is composed of intensely folded granulite and amphibolite facies rocks within mantle sequence peridotites, exhumed by late-stage out-of-sequence thrusting along the Bani Hamid thrust. The Bani Hamid thrust slice includes two-pyroxene quartzites (± hornblende, cordierite, sapphirine), diopside + andradite garnet + wollastonite + scapolite marbles and calc-silicates and amphibolites (hornblende + plagioclase ± clinopyroxene ± biotite) with localized partial melting, intruded by hornblende pegmatites. The Bani Hamid granulites represent metamorphosed cherts and calcareous turbidites probably derived from the distal Haybi Complex and Oman Exotic limestones, which have an alkali basaltic substrate. Metamorphic modeling using the program THERMOCALC in the system NCKFMASHTO (Na 2 O-CaO-K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O-TiO 2 -O) gives peak pressure-temperature conditions of 850 ± 60 °C and 6.3 ± 0.5 kbar, a pressure that is much lower than that of the metamorphic sole, suggesting a different origin. The 206 Pb/ 238 U zircon dates indicate that the gabbroic crust of the ophiolite formed by ridge magmatism from before 96.1 to 95.5 Ma. The 206 Pb/ 238 U zircon dates from the metamorphic sole range from 95.7 to 94.5 Ma, and suggest that metamorphism and melting was either synchronous with or slightly postdated ridge magmatism. The Bani Hamid granulites are younger; zircon and titanite U-Pb dates span ca. 94.5–89.8 Ma. Peraluminous granitic dikes intruding the mantle sequence peridotites are as young as 91.4 Ma and likely reflect localized partial melting of crustal material during the late stage of the obduction process. A minimum of 130 km shortening is recorded by restoration of the major folds within the Bani Hamid thrust sheet, and more than 30 km offset has occurred along the west-directed breaching out-of-sequence Bani Hamid thrust. These rocks may be representative of deep-level duplexes imaged on recent seismic sections across the mountains of northern Oman–United Arab Emirates.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉This review presents an objective account of metamorphic, microstructural and geochronological studies in the Greater Himalayan Sequence (GHS) and adjacent units in Nepal, in the light of recent research. The importance of integrated, multidisciplinary studies is highlighted. A personal view is presented of strategies for determining P–T evolution, and of petrological processes at the micro scale, particularly in relation to departures from equilibrium and the behaviour of partially-melted rock systems. Evidence has accumulated for the existence within the GHS of a High Himalayan Discontinuity, marked by differences in timing of peak metamorphism in hanging wall and footwall, and changes in P–T gradients and paths. Whether or not this is a single continuous horizon, it forms at each location the lower boundary to a migmatitic zone capable of ductile flow, and separates the GHS into an upper division in which channel flow may have operated in the interval 25–18 Ma, and a lower division characterized by an inverted metamorphic gradient, and by metamorphic ages that decrease down-section and are best explained by sequential accretion of footwall slices between 20 and 6 Ma. An overall model for extrusion of the GHS is still not resolved.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈p〉Microstructural and petrological data from 〉60 samples, collected by L.R. Wager in 1933, have been used alongside existing data to investigate temperature gradients and deformational style in four profiles across the South Tibetan Detachment shear zone, over a north–south distance of 35 km in the Mt Everest area, east-central Himalaya. The ductile shear zone, defined on petrographic criteria, extends for 〈i〉c.〈/i〉 900 m beneath the brittle Qomolangma Detachment (QD). New thermobarometry from the north flank of Mt Everest reveals a gradient from 440°C at the QD down to samples recording peak conditions around 650°C, 5.5 kbar. The upper limit of leucogranite sheets forms an approximately isothermal surface at 600–650°C within the developing shear zone. The recrystallized grain size of quartz shows a systematic increase down-section in four transects. Profiles of deformation temperature reveal gradients of up to 200°C km〈sup〉–1〈/sup〉 whose formation and preservation required a combination of processes: a shear zone active for a short period (≤18–15.5 Ma) at high strain rates, with a component of vertical shortening, and a contribution of latent heat from emplacement of sheeted granites. The likely horizontal displacement was 〉40 km, with up to 10 km of vertical exhumation.〈/p〉 〈p〉〈b〉Supplementary material:〈/b〉 List of Wager's examined specimens, mineral compositions used for thermobarometry and results of 〈scp〉thermocalc〈/scp〉 average 〈i〉P〈/i〉–〈i〉T〈/i〉 and 〈i〉T〈/i〉 calculations are available at 〈a href="https://doi.org/10.6084/m9.figshare.c.4157594"〉https://doi.org/10.6084/m9.figshare.c.4157594〈/a〉〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...