ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemical reviews 12 (1912), S. 43-179 
    ISSN: 1520-6890
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical documentation 4 (1964), S. 70-84 
    ISSN: 1520-5142
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Poly(L-lysine) of various molecular weights between 2700 and 475,000 was spin-labeled. From the electron spin resonance spectra, the degree of freedom of the nitroxide was determined by calculation of the rotational correlation time as the poly(L-lysine) underwent the pH-induced random coil to α-helix conformational transition. In general, the rotational correlation time of the nitroxide increased as the pH was increased, indicating a more restricted environment for the spin label when poly(L-lysine) is deprotonated. For the high-molecular-weight poly(L-lysine) this corresponds to the formation of the α-helix and indicates that the side chain-side chain interaction and decreased segmental motion of the backbone (slightly) restricts the motion of the spin label. For the 2700-molecular-weight poly(L-lysine), previously shown not to assume a helical conformation at high pH, the increase in the rotational correlation time of the spin label indicates that the side chain-side chain interaction takes place after deprotonation but without helix formation. This may indicate that helix formation per se is not needed to produce the observed effect even with the high-molecular-weight polymers. The rotational correlation time of the spin label at a particular pH did not depend on the molecular weight of the poly(L-lysine) over the 200-fold range of molecular weights. This indicates that the rotational correlation time reflects the rotational mobility of the spin label in a localized environment and not the rotational diffusion of the entire macromolecule.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Gerlands Beitr. Geophysik, Leipzig, Birkhäuser Verlag, vol. 98, no. B8, pp. 353-367, pp. L15S17, (ISBN: 0-12-018847-3)
    Publication Date: 1989
    Keywords: Geol. aspects ; Deep seismic sounding (espec. cont. crust) ; CRUST ; Tectonics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-04
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-09-05
    Description: We report a flexible strategy for transducing ligand-binding events into electrochemical responses for a wide variety of proteins. The method exploits ligand-mediated hinge-bending motions, intrinsic to the bacterial periplasmic binding protein superfamily, to establish allosterically controlled interactions between electrode surfaces and redox-active, Ru(II)-labeled proteins. This approach allows the development of protein-based bioelectronic interfaces that respond to a diverse set of analytes. Families of these interfaces can be generated either by exploiting natural binding diversity within the superfamily or by reengineering the specificity of individual proteins. These proteins may have numerous medical, environmental, and defense applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benson, D E -- Conrad, D W -- de Lorimier, R M -- Trammell, S A -- Hellinga, H W -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1641-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533486" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Animals ; Beer ; *Biosensing Techniques ; Blood Glucose/analysis ; Carrier Proteins/*chemistry/genetics/*metabolism ; Electrochemistry ; Electrodes ; Ligands ; Maltose/analysis ; Maltose-Binding Proteins ; Monosaccharide Transport Proteins/chemistry/metabolism ; Mutation ; Oxidation-Reduction ; Protein Conformation ; *Protein Engineering ; Rats ; *Ruthenium ; Signal Transduction ; Thermodynamics ; Zinc/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: 〈p〉The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for 〈i〉c.〈/i〉 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence the geological processes that influence the distribution, character and timing of mass transport events and their associated hazards remain poorly understood. Here we develop a classification of the first-order shape of the continental shelf, slope and rise to examine potential relationships between form and process dominance. We found that the margin can be split into six geomorphic groups that vary smoothly from north to south between two basic end-members. The northernmost group (west of Chichagof Island, Alaska) is characterized by concave-upwards slope profiles, gentle slope gradients (2 and display scarp heights between 10 and 250 m. Transpression along the Queen Charlotte Fault increases southwards and the slope physiography is thus progressively more influenced by regional-scale tectonic deformation. The southernmost group (west of Haida Gwaii, British Columbia) defines the tectonically dominated end-member: the continental slope is characterized by steep gradients (〉20°) along the flanks of broad, margin-parallel ridges and valleys. Mass transport features in the tectonically dominated areas are mostly observed along steep escarpments and the larger slides (up to 10 km〈sup〉2〈/sup〉) appear to be failures of consolidated material along the flanks of tectonic features. Overall, these observations highlight the role of first-order margin physiography on the distribution and type of submarine landslides expected to occur in particular morphological settings. The sediment-dominated end-member allows for the accumulation of under-consolidated Quaternary sediments and shows larger, more frequent slides; the rugged physiography of the tectonically dominated end-member leads to sediment bypass and the collapse of uplifted tectonic features. The maximum and average dimensions of slides are an order of magnitude smaller than those of slides observed along other (passive) glaciated margins. We propose that the general patterns observed in slide distribution are caused by the interplay between tectonic activity (long- and short-term) and sediment delivery. The recurrence ( 7 earthquakes along the Queen Charlotte Fault may generate small, but frequent, failures of under-consolidated Quaternary sediments within the sediment-dominated regions. By contrast, the tectonically dominated regions are characterized by the bypass of Quaternary sediments to the continental rise and the less frequent collapse of steep, uplifted and consolidated sediments.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, James W Jr -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):486. doi: 10.1126/science.349.6247.486-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Conrad Law and Policy Counsel, Washington, DC 20005-2725, USA. jamie@conradcounsel.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228133" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1978-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, G W -- New York, N.Y. -- Science. 1978 May 12;200(4342):663-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17812714" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-23
    Description: The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for c. 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence the geological processes that influence the distribution, character and timing of mass transport events and their associated hazards remain poorly understood. Here we develop a classification of the first-order shape of the continental shelf, slope and rise to examine potential relationships between form and process dominance. We found that the margin can be split into six geomorphic groups that vary smoothly from north to south between two basic end-members. The northernmost group (west of Chichagof Island, Alaska) is characterized by concave-upwards slope profiles, gentle slope gradients (〈6°) and relatively low along-strike variance, all features characteristic of sediment-dominated siliciclastic margins. Dendritic submarine canyon/channel networks and retrogressive failure complexes along relatively gentle slope gradients are observed throughout the region, suggesting that high rates of Quaternary sediment delivery and accumulation played a fundamental part in mass transport processes. Individual failures range in area from 0.02 to 70 km 2 and display scarp heights between 10 and 250 m. Transpression along the Queen Charlotte Fault increases southwards and the slope physiography is thus progressively more influenced by regional-scale tectonic deformation. The southernmost group (west of Haida Gwaii, British Columbia) defines the tectonically dominated end-member: the continental slope is characterized by steep gradients (〉20°) along the flanks of broad, margin-parallel ridges and valleys. Mass transport features in the tectonically dominated areas are mostly observed along steep escarpments and the larger slides (up to 10 km 2 ) appear to be failures of consolidated material along the flanks of tectonic features. Overall, these observations highlight the role of first-order margin physiography on the distribution and type of submarine landslides expected to occur in particular morphological settings. The sediment-dominated end-member allows for the accumulation of under-consolidated Quaternary sediments and shows larger, more frequent slides; the rugged physiography of the tectonically dominated end-member leads to sediment bypass and the collapse of uplifted tectonic features. The maximum and average dimensions of slides are an order of magnitude smaller than those of slides observed along other (passive) glaciated margins. We propose that the general patterns observed in slide distribution are caused by the interplay between tectonic activity (long- and short-term) and sediment delivery. The recurrence (〈100 years) of M 〉 7 earthquakes along the Queen Charlotte Fault may generate small, but frequent, failures of under-consolidated Quaternary sediments within the sediment-dominated regions. By contrast, the tectonically dominated regions are characterized by the bypass of Quaternary sediments to the continental rise and the less frequent collapse of steep, uplifted and consolidated sediments.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...