ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-03
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract The equilibrium climate sensitivity, that is, the global‐mean surface‐air temperature change in response to a doubling of the carbon dioxide concentration is a widely used metric in climate change studies. Its exact value is rarely known because its estimation requires a long integration time of several thousand years. We propose a method to estimate an accurate value of the equilibrium response from fully coupled climate models at a reasonable computational cost. Using this method, our state‐of‐the‐art climate model CNRM‐CM6‐1 reaches a stationary state after only few hundred of years of integration. This “Fast‐Forward” method consists of an optimal two‐step forcing pathway designed using the framework of a two‐layer energy balance model. It can be applied easily to any coupled climate model.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-17
    Description: The observed global mean surface air temperature (GMST) has not risen over the last 15 years, spurring outbreaks of skepticism regarding the nature of global warming and challenging the upper-range transient response of the current-generation global climate models. Recent numerical studies have however tempered the relevance of the observed pause in global warming by highlighting the key role of tropical Pacific internal variability. Here we first show that many climate models overestimate the influence of the El Niño Southern Oscillation on GMST, thereby shedding doubt on their ability to capture the tropical Pacific contribution to the hiatus. Moreover, we highlight that model results can be quite sensitive to the experimental design. We argue that overriding the surface wind stress is more suitable than nudging the sea surface temperature for controlling the tropical Pacific ocean heat uptake and, thereby, the multi-decadal variability of GMST. Using the former technique, our model captures several aspects of the recent climate evolution, including the weaker slowdown of global warming over land and the transition towards a negative phase of the Pacific Decadal Oscillation. Yet, the observed global warming is still overestimated, not only over the recent 1998–2012 hiatus period but also over former decades, thereby suggesting that the model might be too sensitive to the prescribed radiative forcings.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-15
    Description: ABSTRACT Comparative assessment of stone weathering intensities and bioclimatic conditions was conducted at four temples located in cleared and forested sites of the Angkor Park, based on similar protocols. Four thousand sculpted lotus petals carved in the same grey sandstone were categorized by using two customized scales of weathering intensity, and climate monitoring was conducted from December 2008 to November 2009. Whereas 70% of the sandstone lotus petals are almost completely destroyed by mechanical weathering in cleared areas, 74% of petals located in forested environments appear to be totally free of mechanical weathering and are only affected by superficial biochemical weathering. Ambient conditions are also contrasting, with the magnitude of the diurnal surface temperature and relative humidity ranges being three times higher at cleared sites than in wooded areas. As wetting–drying cycles are the driving force of sandstone decay at Angkor, causal links are suggested between weathering and climate regimes. In wooded areas, the microclimate is buffered by the forest and the associated lithobionts, which maintain constant humidity levels, reduce thermal stresses at the stone surface and induce a slow biochemical weathering regime. In cleared areas, direct exposure to sunshine and monsoon rains induces pronounced wetting–drying cycles conducive to swelling–shrinking movements and other potential processes, provoking the rapid mechanical decay of the sandstone. Even if local damage can be caused by tree roots, the forest cover and the associated lithobionts obviously play an overall protective role. Additionally, microtopographical factors related to architectural designs and post-building events probably explain intra-site and between site minor differences in the amount of sandstone decay, by influencing key factors such as the water residence time at the stone surface. Last, the contrasting weathering regimes in forested and cleared sites are but a trend, for besides overwhelming mechanical weathering, chemical weathering is also operative at cleared sites, as indicated by salt efflorescences and ferric oxidation. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-08
    Description: [1]  Estimating the mixed-layer heat budget is a key issue for understanding the cold tongue development in the eastern equatorial Atlantic. A high-resolution ocean regional model is used to diagnose the mixed-layer heat budget online during the EGEE-3 experiment from May to August 2006. The heat budget shows the major role of the horizontal advection and turbulent mixing in the mixed-layer temperature balance in the cold tongue. The surface net heat flux and entrainment processes play a minor role. The equatorial cooling is mainly induced by low-frequency advection, which is balanced by high-frequency zonal and meridional advections. The high-frequency advections are organized in patterns along the northern edge of the cold tongue, where they are associated with strong sea surface temperature gradients and well-developed tropical instability waves in the western Atlantic. Special attention is paid to the wind energy flux, which controls horizontal advection and turbulent mixing. We suggest that the wind energy flux drives the vertical velocity, which in turn adjusts the mixed-layer depth, its stratification, and the vertical shear of the horizontal current. Although vertical advection is not essential in providing cold water in the Atlantic cold tongue, it is shown that the vertical velocity plays a central role in preconditioning the mixed layer and maximizes the turbulent mixing.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-20
    Description: Comparative assessment of stone weathering intensities and bioclimatic conditions was conducted at four temples located in cleared and forested sites of the Angkor park, based on similar protocols. 4000 sculpted lotus petals carved in the same grey sandstone were categorized by using two customised scales of weathering intensity, and climate monitoring was conducted from December 2008 to November 2009. Whereas 70% of the sandstone lotus petals are almost completely destroyed by sandstone weathering in cleared areas, 74% of petals located in forested environments appear to be totally free of mechanical weathering and are only affected by superficial biochemical weathering. Ambient conditions are also contrasting, with the magnitude of the diurnal surface temperature and relative humidity ranges being three times higher at cleared sites than in wooded areas. As wetting-drying cycles are the driving force of sandstone decay at Angkor, causal links are suggested between weathering and climate regimes. In wooded areas, the microclimate is buffered by the forest and the associated lithobionts, which maintain constant humidity levels, reduce thermal stresses at the stone surface and induce a slow biochemical weathering regime. In cleared areas, direct exposure to sunshine and monsoon rains induces pronounced wetting-drying cycles conducive to swelling-shrinking movements and other potential processes, provoking the rapid mechanical decay of the sandstone. Even if local damage can be caused by tree roots, the forest cover and the associated lithobionts obviously play an overall protective role. Additionally, microtopographical factors related to architectural designs and post-building events probably explain intra-site and between site minor differences in the amount of sandstone decay, by influencing key factors such as the water residence time at the stone surface. Last, the contrasting weathering regimes in forested and cleared sites are but a trend, for besides overwhelming mechanical weathering, chemical weathering is also operative at cleared sites, as indicated by salt efflorescences and ferric oxidation. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-16
    Description: Three Romanesque churches of the Bourbonnais region in the French Massif Central have been investigated. These date back to the twelfth century, and are mainly built of red and white sandstones. Their ashlar blocks were extensively repointed in the mid-twentieth century with cement-rich mortar. In order to quantitatively assess the impact of repointing on the decay rates of the sandstones, the following methods have been used: dating of reference surfaces (‘zero datum levels’) based on stone-dressing marks, stone-by-stone and terrestrial LiDAR (Light Detection And Ranging) surveys, and petrographical analyses including on-site non-destructive tests. This study reveals that, between the twelfth century and the mid-twentieth century, intrinsic geological factors have been a key control on weathering rates. Stone surface recession has proceeded, on average, 500 times faster in the poorly cemented soft white sandstone compared to the iron-cemented red sandstone (4 mm/century v. 0.008 mm/century). Since the mid-twentieth century, the replacement of the original lime mortar with a cement-rich mortar has resulted in a marked increase in weathering rates and resulting surface recession of the poorly cemented white sandstone: this increase is fivefold where cement-lime mortar (‘bastard mortar’) has been used and 10-fold where harder cement-rich mortar has been applied. By contrast, the application of cement-lime mortar between the ashlars composed of iron-cemented red sandstone had no deleterious effects. This study confirms that the use of cement-based mortar should be avoided on soft and porous masonries. It also stresses the fact that accelerated stone surface recession rates are systematically associated with heritage sites that are subject to significant anthropogenic effects caused by inappropriate interventions or excessive pressure on the monuments or their environment.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-25
    Description: This paper aims at characterizing the impact of the atmospheric variability on the aerosol burden and residence time in the Arctic region. For this purpose, a global simulation using an emissions inventory from the year 2000 is performed for the period 2000-2005. The model thus describes a 6-year evolution of sulphate, black carbon (BC) and mineral dust, whose variability is driven by the atmosphere only. Our simulation is validated thanks to comparisons with surface observations. The aerosol residence time takes minimum values in fall: 4 days for sulphate and 8 days for BC and dust. It takes maximum values in June: 10 days for sulphate and 16 days for BC and dust. However, from one spring to another, it can vary by about 50% for sulphate, 40% for BC and 100% for dust, depending on the atmospheric variability. In June, sulphate, BC and dust burden averaged over the Arctic region reach respectively maximums of 1.9 mg[S] m - ², 0.2 mg m - ² and 6 mg m - ², characteristic of the so-called “Arctic haze”. From one year to another, these values can vary by 20% for sulphate, 10% for BC and 60% for dust. Keywords: aerosols; arctic; atmosphere; residence time; pollutant transport (Published: 24 January 2012) Citation: Tellus B 2012, 64 , 11596, DOI: 10.3402/tellusb.v64i0.11596
    Print ISSN: 0280-6509
    Electronic ISSN: 1600-0889
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract It has long been thought that reducing mean‐state biases would lead to improvements in variability. However, so far, there is no confirmation of a relation between model mean biases and variability. While most coupled models exhibit substantial sea surface temperature (SST) biases in the Tropical Atlantic, they are still able to reproduce reasonable SST variability in the basin. We investigate the relationship between the first‐ and second‐order moments of the SST distribution in the equatorial Atlantic using Coupled Model Intercomparison Project Phase 5 simulations. Results suggest that the ability of the coupled models to properly reproduce the interannual variability is linked to their ability to simulate a realistic seasonal cycle evolution, that is, a realistic cold tongue development and a realistic Bjerknes feedback during the beginning of summer, rather than to their ability to represent the summer SST climatology.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-09
    Description: Populations of the riparian pioneer species Populus nigra L. which establish on alluvial bars within river channels modulate sediment dynamics and fluvial landforms. Dense cohorts of P. nigra have colonised gravel point bars along the channelized river Garonne, France, during the last twenty years and have enhanced the vertical, lateral and longitudinal development of the bars. For this period, the geomorphic characteristics of two wooded point bars on this laterally stable river are closely linked to the spatial distribution and intensity of establishment and resistance of different cohorts of P. nigra. Furthermore, P. nigra colonisation dynamics were controlled by engineer effects of this same species. This relationship is illustrated by a significant correlation between key geomorphic and biological variables measured in situ and characterised with a set of four aerial photographs taken between 2000 and 2010. The development of wooded point bars, which are discrete biogeomorphic units, over the studied period, appear to result from a specific biogeomorphic positive feedback of matter aggregation and vegetation establishment related to sediment trapping and stabilisation by pioneer engineer plants. We propose a conceptual model of biogeomorphic unit construction for channelized, lateral stable rivers. We consider the resultant biogeomorphic units as functional from an ecological point of view because P. nigra enhances at the cohort scale (i) its own inherent capacity to resist hydrogeomorphic disturbances, and (ii) its resilience capacity as a result of successful colonisation, especially downstream of mature poplar stands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...