ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 1432-1130
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract An isotope dilution mass spectrometric (IDMS) method has been developed for the simultaneous determination of the complexes of 11 heavy metals (Ag, Cd, Cu, Mo, Ni, Pb, Tl, U, W, Zn and Zr) with humic substances (HS) by coupling HPLC with ICP-MS and applying the on-line isotope dilution technique. The HPLC separation was carried out with size exclusion chromatography. This HPLC/ICP-IDMS method was applied to samples from a brown water, ground water, sewage and seepage water as well as for a sample containing isolated fulvic acids. The total contents of heavy metals and of their complexes were analyzed in these samples with detection limits in the range of 5–110 ng/L. The analysis of heavy metal/HS complexes from the different waters resulted in characteristic fingerprints of the distribution pattern of heavy metals in the separated HS fractions. A comparison between the total heavy metal concentrations and their portions bound to humic substances showed distinct differences for the various metals. Simultaneous 12C detection was used for the characterization of HS complexes not identified by UV detection and for the determination of relative DOC concentrations of chromatographic peaks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    OMICS International
    In:  Mass Spectrometry & Purification Techniques, 1 (101).
    Publication Date: 2018-09-24
    Description: Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionation of Δ11Bleaf-roots = 27‰ existed in the studied bell pepper plant, which represents about 1/3 of the overall natural boron isotope variation (ca. 80‰). Two simultaneous operating processes are a possible explanation for the observed systematic intra-plant δ11B variation: 1) B is fixed in cell walls in its tetrahedral form (borate), which preferentially incorporates the light B isotope and the remaining xylem sap gets enriched in the heavy B isotope and 2) certain transporter preferentially transport the trigonal 11B-enriched boric acid molecule and thereby the heavy 11B towards young plant compartments which were situated distal of the roots and typically high in the plant. Consequently, an enrichment of the heavy 11B isotope in the upper young plant parts located at the top of the plant could explain the observed isotope systematic. The identification and understanding of the processes generating systematic intra-plant δ11B variations will potentially enable the use of B isotope for plant metabolism studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-04
    Description: Rationale Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intraplant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods A fully validated analytical procedure based on MC‐ICP‐MS, sample decomposition and B matrix separation was applied to study B isotope fractionation. The validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8 ‰ for pure boric acid solutions and ≤ 1.5 ‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results The B isotope compositions of irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8 ‰ (1 SD)), possibly by a facilitated transport of the heavy 11B to growing meristems by B transporters. Conclusions B isotopes can be used to identify plant metabolism in response to the B concentration in the irrigation water and during intraplant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-15
    Description: Rationale Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra‐plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods A fully validated analytical procedure based on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS), sample decomposition and B matrix separation was applied to study B isotope fractionation. The validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8‰ for pure boric acid solutions and ≤1.5‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results The B isotope compositions of irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8‰ (1 SD)), possibly by a facilitated transport of the heavy 11B isotope to growing meristems by B transporters. Conclusions The B isotopes can be used to identify plant metabolism in response to the B concentration in the irrigation water and during intra‐plant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-29
    Description: Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW‐04442 and NMIJ 3681‐a. Only NIST SRM 981 and NMIJ 3681‐a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM‐EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg−1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol−1, n(207Pb)/n(204Pb) = 15.578(18) mol mol−1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol−1 with the associated expanded uncertainties (k = 2) given in brackets. ERM‐AE142 is a high‐purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg−1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol−1, n(207Pb)/n(204Pb) = 15.944(17) mol mol−1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol−1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM‐EB400), the other does not (ERM‐AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM‐AE142, a delta value of δ208/206PbNIST SRM981 = −28.21(30)‰ was obtained, and for ERM‐EB400, a delta value of δ208/206PbNIST SRM981= −129.47(38)‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets.
    Print ISSN: 1639-4488
    Electronic ISSN: 1751-908X
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...