ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Pollution. ; Water. ; Hydrology. ; Pollution. ; Water.
    Description / Table of Contents: Preface -- Introduction -- 1 Precipitation in Mexico -- 2 Groundwater in Mexico -- 3 Geohydrology in Mexico -- 4 Water-Energy-Food Nexus in Mexico -- 5 Data Models for River Basin Management in Mexico -- 6 Domestic and Industrial Water Use and Consumption in Mexico -- 7 Development of Hydraulic Infrastructure in Mexico -- 8 Wastewater Treatment in Mexico -- 9 Climate Change and Water Resources in Mexico -- 10 Water Security and Sustainability in Mexico -- 11 Expected Impacts on Agriculture due to Climate Change in Northern Mexico -- 12 Dams Operation Policy in Mexico during Hurricanes Season -- 13 Hydrologic and Hydraulic Works of the Aztec Civilization -- 14 Analysis of the Spatial Dependence of Rainfall Fields in the Southeast of Mexico, Using Directional Variograms -- 15 Possible Scenarios of Global Warming Impacts on the Evaporation in Mexico -- Index.
    Abstract: This comprehensive volume presents the topic of water resources of Mexico from a different angle. Besides covering the geohydrology it also offers a brief account of the ancient water resources works, explains from where the water is coming, how the water is being used in homes and in the industry, how the dams are operated in the hurricane season, some aspects of the water-energy-food securities nexus and the expectations for the future in connection with global climate change. The book is of interest to every one connected with the water resources of Mexico, e.g. federal and state employees of agencies related with water management, water supply and wastewater treatment. It is also of value to those in academia and employed at water related professional associations and the general public.
    Type of Medium: Online Resource
    Pages: XII, 288 p. 138 illus., 125 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030406868
    Series Statement: World Water Resources, 6
    DDC: 363.73
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Natural disasters. ; Geology. ; Geotechnical engineering. ; Natural Hazards. ; Geology. ; Geotechnical Engineering and Applied Earth Sciences.
    Description / Table of Contents: Introduction -- Basic Notions of Probability and Statistics for Flood -- Normal Distribution -- Log-Normal Distribution with 2 parameters -- Log-Normal Distribution with 3 parameters -- Gamma Distribution -- Pearson Type III Distribution -- Log-Pearson Type III Distribution -- Extreme Value type I Distribution -- General Extreme Value Distribution -- Log-Normal Distribution with 3 parameters for the Minima -- Pearson Type III Distribution for the Minima -- Extreme Value Type III Distribution for the Minima -- General Extreme Value Distribution for the Minima. .
    Abstract: This book is of paramount importance in the fields of engineering and applied sciences, given that through the values obtained by these procedures, many structures, like spillways of dams and highway culverts, are designed and constructed. The main aim of this book is to provide procedures for implementing many probability distribution functions, all of them based on using a standard and a common computational application known as Excel, which is available to any personal computer user. The computer procedures are given in enough detail, so readers can develop their own Excel worksheets. All the probability distribution functions in the book have schemes to estimate its parameters, quantiles, and confidence limits through the methods of moments and maximum likelihood.
    Type of Medium: Online Resource
    Pages: XVII, 410 p. 304 illus., 300 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030863906
    Series Statement: Earth and Environmental Sciences Library,
    DDC: 551
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: 9783030863906 (e-book)
    Description / Table of Contents: This book is of paramount importance in the fields of engineering and applied sciences, given that through the values obtained by these procedures, many structures, like spillways of dams and highway culverts, are designed and constructed. The main aim of this book is to provide procedures for implementing many probability distribution functions, all of them based on using a standard and a common computational application known as Excel, which is available to any personal computer user. The computer procedures are given in enough detail, so readers can develop their own Excel worksheets. All the probability distribution functions in the book have schemes to estimate its parameters, quantiles, and confidence limits through the methods of moments and maximum likelihood.
    Type of Medium: 12
    Pages: 1 Online-Ressource (XVII, 410 Seiten) , Illustrationen
    ISBN: 9783030863906 , 978-3-030-86390-6
    ISSN: 2730-6674 , 2730-6682
    Series Statement: Earth and environmental sciences library
    Language: English
    Note: Contents 1 Introduction 1.1 Introduction 1.2 Brief History of Natural Extreme Events 1.3 Motivation and Goals 1.4 Chapter Outline 2 Basic Notions of Probability and Statistics for Natural Extreme Events Frequency Analyses 2.1 Introduction 2.2 Chapter Objectives 2.3 Basic Notions of Theory of Probability 2.3.1 Definition of Probability 2.3.2 Random Variables 2.3.3 Probability Distribution Functions 2.3.4 Probability Density Functions 2.3.5 Non-exceedance and Exceedance Probabilities 2.3.6 Return Period 2.4 Basic Notions of Statistics 2.4.1 Moments of a Distribution 2.4.2 Measures of Central Tendency 2.4.3 Measures of Dispersion 2.4.4 Measures of Symmetry 2.4.5 Measures of Peakedness 2.4.6 Descriptive Statistics 2.5 Methods for the Estimation of Parameters of Probability Distribution Functions 2.5.1 The Method of Moments (MOM) 2.5.2 The Method of Maximum Likelihood (ML) 2.5.3 The Method of Probability Weighted Moments (PWM) 2.6 Quantile Estimation and Frequency Factor 2.7 Plotting Position Formulas 2.8 Confidence Limits 2.9 Standard Errors of Estimates 2.9.1 MOM Method 2.9.2 ML Method 2.9.3 PWM Method 2.10 Plotting the Extreme Value Data and Models 2.10.1 Normal Probability Paper 2.10.2 Gumbel’s Probability Paper 2.11 Goodness of Fit Tests 2.11.1 The Standard Error of Fit 2.11.2 The Mean Absolute Relative Deviation 2.11.3 The Akaike’s Information Criterion 2.12 Outliers Tests 2.12.1 The Grubbs and Beck Test 2.13 Test for Independence and Stationarity 2.14 Test for Homogeneity and Stationarity 3 Normal Distribution 3.1 Introduction 3.2 Chapter Objectives 3.3 Probability Distribution and Density Functions 3.4 Estimation of Parameters 3.4.1 MOM Method 3.4.2 ML Method 3.5 Estimation of Quantiles for the NOR Distribution 3.5.1 Examples of Estimation of MOM and ML Quantiles for the NOR Distribution 3.6 Goodness of Fit Test 3.6.1 Examples of Application of the SEF and MARD to the MOM-ML Estimators of the Parameters of the NOR Distribution 3.7 Estimation of the Confidence Limits for the NOR Distribution 3.8 Estimation of the Standard Errors for the NOR Distribution 3.8.1 MOM Method 3.8.2 ML Method 3.9 Examples of Application for the NOR Distribution Using Excel® Spreadsheets 3.9.1 Flood Frequency Analysis 3.9.2 Rainfall Frequency Analysis 3.9.3 Wave Height Frequency Analysis 3.9.4 Maximum Annual Wind Speed Frequency Analysis 4 Two-Parameters Log-Normal Distribution 4.1 Introduction 4.2 Chapter Objectives 4.3 Probability Distribution and Density Functions 4.4 Estimation of the Parameters 4.4.1 MOM Method 4.4.2 ML Method 4.5 Estimation of Quantiles for the LN2 Distribution 4.5.1 Examples of Estimation of MOM and ML Quantiles for the LN2 Distribution 4.6 Goodness of Fit Test 4.6.1 Examples of Application of the SEF and MARD to the MOM and ML Estimators of the Parameters of the LN2 Distribution 4.7 Estimation of the Confidence Limits for the LN2 Distribution 4.8 Estimation of the Standard Errors for the LN2 Distribution 4.8.1 MOM Method 4.8.2 ML Method 4.9 Examples of Application for the LN2 Distribution Using Excel® Spreadsheets 4.9.1 Flood Frequency Analysis 4.9.2 Rainfall Frequency Analysis 4.9.3 Maximum Significant Wave Height Frequency Analysis 4.9.4 Annual Maximum Wind Speed Frequency Analysis 5 Three-Parameters Log-Normal Distribution 5.1 Introduction 5.2 Chapter Objectives 5.3 Probability Distribution and Density Functions 5.4 Estimation of the Parameters 5.4.1 MOM Method 5.4.2 ML Method 5.5 Estimation of Quantiles for the LN3 Distribution 5.5.1 Examples of Estimation of MOM Quantiles for the LN3 Distribution 5.6 Goodness of Fit Test 5.6.1 Examples of Application of the SEF and MARD to the MOM and ML Estimators of the Parameters of the LN3 Distribution 5.7 Estimation of the Confidence Limits for the LN3 Distribution 5.8 Estimation of the Standard Errors for the LN3 Distribution 5.8.1 MOM Method 5.8.2 ML Method 5.9 Examples of Application for the LN3 Distribution Using Excel® Spreadsheets 5.9.1 Flood Frequency Analysis 5.9.2 Rainfall Frequency Analysis 5.9.3 Maximum Significant Wave Height Frequency Analysis 5.9.4 Annual Maximum Wind Speed Frequency Analysis 6 Gamma Distribution 6.1 Introduction 6.2 Chapter Objectives 6.3 Probability Distribution and Density Functions 6.4 Estimation of the Parameters 6.4.1 MOM Method 6.4.2 ML Method 6.5 Estimation of Quantiles for the GAM Distribution 6.5.1 Examples of Estimation of MOM and ML Quantiles for the GAM Distribution 6.6 Goodness of Fit Test 6.6.1 Examples of Application of the SEF and MARD to the MOM and ML Estimators of the Parameters of the GAM Distribution 6.7 Estimation of Confidence Limits for the GAM Distribution 6.8 Estimation of Standard Errors for the GAM Distribution 6.8.1 MOM Method 6.8.2 ML Method 6.9 Examples of Application for the GAM Distribution Using Excel ® Spreadsheets 6.9.1 Flood Frequency Analysis 6.9.2 Rainfall Frequency Analysis 6.9.3 Maximum Significant Wave Height Frequency Analysis 6.9.4 Annual Maximum Wind Speed Frequency Analysis 7 Pearson Type III Distribution 7.1 Introduction 7.2 Chapter Objectives 7.3 Probability Distribution and Density Functions 7.4 Estimation of the Parameters 7.4.1 MOM Method 7.4.2 ML Method 7.5 Estimation of Quantiles for the PIII Distribution 7.5.1 Examples of Estimation of MOM and ML Quantiles for the PIII Distribution 7.6 Goodness of Fit Test 7.6.1 Examples of Application of the SEF and MARD to the MOM and ML Estimators of the Parameters of the PIII Distribution 7.7 Estimation of Confidence Limits for the PIII Distribution 7.8 Estimation of Standard Errors for the PIII Distribution 7.8.1 MOM Method 7.8.2 ML Method 7.9 Examples of Application for the PIII Distribution Using Excel® Spreadsheets 7.9.1 Flood Frequency Analysis 7.9.2 Rainfall Frequency Analysis 7.9.3 Maximum Significant Wave Height Frequency Analysis 7.9.4 Annual Maximum Wind Speed Frequency Analysis 8 Log-Pearson Type III Distribution 8.1 Introduction 8.2 Chapter Objectives 8.3 Probability Distribution and Density Functions 8.4 Estimation of the Parameters 8.4.1 MOM Method 8.4.2 ML Method 8.5 Estimation of Quantiles for the LPIII Distribution 8.5.1 Estimation of MOM1, MOM2 and ML Quantiles for the LPIII Distribution 8.5.2 Estimation of WRC Quantiles for the LPIII Distribution 8.5.3 Examples of Estimation of MOM1, MOM2, WRC and ML Quantiles for the LPIII Distribution 8.6 Goodness of Fit Test 8.6.1 Examples of Application of the SEF and MARD to the MOM1, WRC and ML Estimators of the Parameters of the LPIII Distribution 8.7 Estimation of Confidence Limits for the LPIII Distribution 8.7.1 Estimation of Confidence Limits for the LPIII Distribution for MOM1, MOM2, and ML Methods 8.7.2 Estimation of Confidence Limits for the LPIII Distribution for WRC Method 8.8 Estimation of Standard Errors for the LPIII Distribution 8.8.1 MOM Method 8.8.2 ML Method 8.9 Examples of Application for the LPIII Distribution Using Excel® Spreadsheets 8.9.1 Flood Frequency Analysis 8.9.2 Rainfall Frequency Analysis 8.9.3 Maximum Significant Wave Height Frequency Analysis 8.9.4 Annual Maximum Wind Speed Frequency Analysis 9 Extreme Value Type I Distribution 9.1 Introduction 9.2 Chapter Objectives 9.3 Probability Distribution and Density Functions 9.4 Estimation of the Parameters 9.4.1 MOM Method 9.4.2 ML Method 9.4.3 PWM Method 9.5 Estimation of Quantiles for the EVI Distribution 9.5.1 Examples of Estimation of MOM, ML and PWM Quantiles for the EVI Distribution 9.6 Goodness of Fit Test 9.6.1 Examples of Application of the SEF and MARD to the MOM, ML and PWM Estimators of the Parameters of the EVI Distribution 9.7 Estimation of Confidence Limits for the EVI Distribution 9.8 Estimation of Standard Errors for the EVI Distribution 9.8.1 MOM Method 9.8.2 ML Method 9.8.3 PWM Method 9.9 Examples of Application for the EVI Distribution Using Excel® Spreadsheets 9.9.1 Flood Frequency Analysis 9.9.2 Rainfall Frequency Analysis 9.9.3 Maximum Significant Wave Height Frequency Analysis 9.9.4 Annual Maximum Wind Speed Frequency Analy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: Changes in marine environments, including pH changes, have been correlated to alterations in the physiology and disease susceptibility of cultured organisms at the early stages of development. In this study, high-throughput sequencing of the V3-V4 region of the 16S rRNA gene was performed to evaluate the bacterial biodiversity of Crassostrea gigas pediveliger larvae and spat under acidic stress compared to that of larvae at normal pH value. The evaluation was performed in an experimental system with continuous water flow and pH manipulation by CO2 bubbling to simulate acidification (pH 7.38 ± 0.039), using the current ocean pH conditions (pH 8.116 ± 0.023) as a reference. The results indicated that the bacterial communities associated with both pediveliger larvae and spat were modified in response to acidic conditions. The families Rhodobacteraceae and Campylobacteraceae were the most affected by the change in pH, with increases in Vibrionaceae in pediveliger larvae and Planctomycetaceae and Phyllobacteriaceae in spat detected. The results of this study demonstrate that the bacterial communities associated with C. gigas pediveliger larvae and spat are responsive to changes in ocean acidification
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Community composition and diversity; Crassostrea gigas; Entire community; Evenness of species; Evenness of species, standard deviation; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Life stage; Mollusca; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Shannon Diversity Index; Shannon Diversity Index, standard deviation; Simpson index of diversity; Simpson index of diversity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 384 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 117 (1995), S. 10123-10124 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 63 (1991), S. 1362-1366 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1420-9136
    Keywords: Key words: Coda waves, coda-Q−1, attenuation, scattering, Venezuela, Caribbean.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q −1 (Q c −1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q i −1) and scattering (Q s −1) to total attenuation (Q t −1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1130
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A very simple spectrophotometric method is described for resolving ternary mixtures of the food dyes Tartrazine (E-102), Quinoline Yellow (E-104) and Patent Blue V (E-131) by using the second derivative of the spectra with measurements at zero-crossing wavelengths. Calibration graphs are linear up to 20.0 mg/L of Tartrazine, up to 20.0 mg/L of Quinoline Yellow and up to 6.4 mg/L of Patent Blue V. Repeatability and reproducibility studies (with the Students’s and F tests) were achieved for two series of nine standards for each dye showing no significant differences at the 95% confidence level. Detection limits of 0.0526, 0.0164 and 0.0034 mg/L were obtained for Tartrazine, Quinoline Yellow and Patent Blue V, respectively. This method was used for determining synthetic mixtures of these colorants in different ratios and it was successfully applied to four commercial products without previous separation step. The results found in commercial products were compared with those obtained by an HPLC method and very similar values were found for both methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 60 (1998), S. 27-37 
    ISSN: 1432-0819
    Keywords: Key words Mount Spurr ; Crater Peak ; Alaska ; Three-dimensional structure ; Hydrothermal system ; Magmatic conduit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The three-dimensional P-wave velocity structure of Mount Spurr is determined to depths of 10 km by tomographic inversion of 3,754 first-arriving P-wave times from local earthquakes recorded by a permanent network of 11 seismographs. Results show a prominent low-velocity zone extending from the surface to 3–4 km below sea level beneath the southeastern flank of Crater Peak, spatially coincident with a geothermal system. P-wave velocities in this low-velocity zone are approximately 20% slower than those in the shallow crystalline basement rocks. Beneath Crater Peak an approximately 3-km-wide zone of relative low velocities correlates with a near-vertical band of seismicity, suggestive of a magmatic conduit. No large low-velocity zone indicative of a magma chamber occurs within the upper 10 km of the crust. These observations are consistent with petrologic and geochemical studies suggesting that Crater Peak magmas originate in the lower crust or upper mantle and have a short residence time in the shallow crust. Earthquakes relocated using the three-dimensional velocity structure correlate well with surface geology and other geophysical observations; thus, they provide additional constraints on the kinematics of the Mount Spurr magmatic system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...