ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: 9783030756024 (e-book)
    Description / Table of Contents: This book provides examples of pollutants, such as accidental oil spills and non-degradable plastic debris, which affect marine organisms of all taxa. Terrestrial runoff washes large amounts of dissolved organic materials from agriculture and industry, toxic heavy metals, pharmaceuticals, and persistent organic pollutants which end up into rivers, coastal habitats, and open waters. While this book is not intended to encyclopaedically list all kinds of pollution, it rather exemplifies the problems by concentrating on a number of serious and prominent recent developments. The chapters in this book also discuss measures to decrease and remove aquatic pollution to mitigate the stress on aquatic organisms. Aquatic ecosystems provide a wide range of ecological and economical services. In addition to providing a large share of the staple diet for a fast growing human population, oceans absorb most of the anthropogenically emitted carbon dioxide and mitigate climate change. As well as rising temperatures and ocean acidification, pollution poses increasing problems for aquatic ecosystems and organisms reducing its functioning and services which are exposed to a plethora of stress factors.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xiii, 426 Seiten) , Illustrationen, Diagramme, Karten
    ISBN: 9783030756024 , 978-3-030-75602-4
    Language: English
    Note: Contents 1 Introduction / Donat-P. Häder, E. Walter Helbling, and Virginia E. Villafañe 2 Pollution Affecting Cyanobacteria in Aquatic Habitats / Abha Pandey, Sonal Mishra, Neha Kumari, Vidya Singh, and Rajeshwar P. Sinha 3 Effects of Pollution on Fish / Donat-P. Häder 4 Effects of Pollution in Aquatic Food Chains / Raúl González, Cristian Durante, Marina Arcagni, Romina Juncos, Juan Seco Pon, Enrique Crespo, and Maite Narvarte 5 Pollution in the Arctic Ocean / Sten-Åke Wängberg and Göran Björk 6 Contamination of Coral Reefs in the Mexican Caribbean / Anastazia T. Banaszak 7 Input of Terrestrial Material into Coastal Patagonian Waters and Its Effects on Phytoplankton Communities from the Chubut River Estuary (Argentina) / Juan I. Vizzo, Marco J. Cabrerizo, Virginia E. Villafañe, and E. Walter Helbling 8 Marine Eutrophication: Overview from Now to the Future / Paulo Antunes Horta, Leonardo Rubi Rörig, Giulia Burle Costa, José Bonomi Baruffi, Eduardo Bastos, Lyllyan Santos Rocha, Giovanna Destri, and Alessandra Larissa Fonseca 9 Anthropogenic Pollution of Coastal Ecosystems in Brazil / Sebastian M. Strauch and Gilmar S. Erzinger 10 Hydrochemical Insight and Groundwater Supply: A Case Study of Patagonia’s Chubut River / Américo I. Torres, Luis F. H. Niencheski, Verena A. Campodonico, Andrea I. Pasquini, Mauricio Faleschini, and Pedro J. Depetris 11 Pharmaceutical Pollutants in Aquatic Ecosystems / Gilmar S. Erzinger, Sebastian M. Strauch, Monique Fröhlich, Carla Keite Machado, and Lineu del Ciampo 12 Detergents Pollution in Freshwater Ecosystems / Azizullah Azizullah, Sarzamin Khan, Sabeela Rehman, Nadia Taimur, and Donat-P. Häder 13 Heavy Metals Pollution in Surface Waters of Pakistan / Azizullah Azizullah, Nadia Taimur, Sarzamin Khan, and Donat-P. Häder 14 Arsenic Pollution / Donat-P. Häder 15 Petroleum Hydrocarbons in Atlantic Coastal Patagonia / Marina L. Nievas El Makte, Rosana Polifroni, Marcela A. Sepúlveda, and Ana Fazio 16 Dumping of Toxic Waste into the Oceans / Donat-P. Häder 17 Microplastics as Pollutants in the Marine Environment / Anthony Andrady and Liping Zhu 18 Effects of Ocean Acidification on Marine Primary Producers and Related Ecological Processes Under Multiple Stressors / Peng Jin and Kunshan Gao
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-14
    Keywords: EXP; Experiment; Experimental treatment; Experiment day; Gao_etal_09_T1; Growth rate; pH; pH meter (Mettler Toledo, USA); Salinity; see reference(s); Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 231 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Xu, Kai; Gao, Kunshan; Villafañe, Virginia E; Heibling, E W (2011): Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths. Biogeosciences, 8(6), 1441-1452, https://doi.org/10.5194/bg-8-1441-2011
    Publication Date: 2023-07-07
    Description: Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (〉280, 〉295, 〉305, 〉320, 〉350 and 〉395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.
    Keywords: Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Chromista; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Haptophyta; Laboratory experiment; Laboratory strains; Light; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species; Temperature
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-07
    Description: Increasing atmospheric CO2 concentration affects calcification in most planktonic calcifiers. Both reduced or stimulated calcification under high CO2 have been reported in the widespread coccolithophore Emiliania huxleyi. This might affect the response of cells to photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) by altering the thickness of the coccolith layer. Here we show that in the absence of UVR, the calcification rates in E. huxleyi decrease under lowered pH levels (pHNBS of 7.9 and 7.6; pCO2 of 81 and 178 Pa or 804 and 1759 ppmv, respectively) leading to thinned coccolith layers, whereas photosynthetic carbon fixation was slightly enhanced at pH 7.9 but remained unaffected at pH 7.6. Exposure to UVR (UV-A 19.5 W m**-2, UV-B 0.67 W m**-2) in addition to PAR (88.5 W m**-2), however, results in significant inhibition of both photosynthesis and calcification, and these rates are further inhibited with increasing acidification. The combined effects of UVR and seawater acidification resulted in the inhibition of calcification rates by 96% and 99% and that of photosynthesis by 6% and 15%, at pH 7.9 and 7.6, respectively. This differential inhibition of calcification and photosynthesis leads to significant reduction of the ratio of calcification to photosynthesis. Seawater acidification enhanced the transmission of harmful UVR by about 26% through a reduction of the coccolith layer of 31%. Our data indicate that the effect of a high-CO2 and low-pH ocean on E. huxleyi (because of reduced calcification associated with changes in the carbonate system) enhances the detrimental effects of UVR on the main pelagic calcifier.
    Keywords: Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Chromista; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Gao_etal_09_T1; Gao_etal_09_T2; Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of carbon per cell; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, total; Carbon/Phosphorus ratio; Carbonate ion; Carbon dioxide; Carbon dioxide, total; Chromista; Emiliania huxleyi; Emiliania huxleyi, coccolith layer thickness; Emiliania huxleyi, diameter; EXP; Experiment; Experimental treatment; Gao_etal_09_T2; Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Measured; Microscopy; Net photosynthesis rate, per cell; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Primary production/Photosynthesis; Salinity; see reference(s); Single species; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 99 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biological weighting function; Calcite saturation state; Calcium; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Salinity; see reference(s); Temperature, water; Titration potentiometric; Ultraviolet radiation wavelength
    Type: Dataset
    Format: text/tab-separated-values, 800 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcification rate, standard deviation; Calcification rate of carbon per cell; Calcite saturation state; Calcium; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Phosphorus ratio; Carbon/Phosphorus ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Non photochemical quenching; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Photochemical efficiency; Salinity; Temperature, water; Time in minutes; Titration potentiometric; Ultraviolet-a radiation-induced inhibition of effective photochemical quantum yield; Ultraviolet-a radiation-induced inhibition of effective photochemical quantum yield, standard deviation; Ultraviolet-b radiation-induced inhibition of effective photochemical quantum yield; Ultraviolet-b radiation-induced inhibition of effective photochemical quantum yield, standard deviation; Ultraviolet radiation-induced inhibition of effective photochemical quantum yield; Ultraviolet radiation-induced inhibition of effective photochemical quantum yield, standard deviation; Ultraviolet radiation wavelength
    Type: Dataset
    Format: text/tab-separated-values, 2808 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Li, Yahe; Gao, Kunshan; Villafañe, Virginia E; Helbling, E Walter (2012): Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosciences, 9(10), 3931-3942, https://doi.org/10.5194/bg-9-3931-2012
    Publication Date: 2024-03-15
    Description: Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Damage/repair ratio; Damage/repair ratio, standard deviation; Damage rate; Damage rate, standard deviation; Effective quantum yield; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Laboratory strains; Light; Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeodactylum tricornutum; Potentiometric; Primary production/Photosynthesis; Repair rate; Repair rate, standard deviation; Salinity; Single species; Species; Temperature; Temperature, water; Time in minutes; Treatment; Ultraviolet radiation-induced inhibition of photosynthesis; Ultraviolet radiation-induced inhibition of photosynthesis, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 41489 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter (2013): Ocean Acidification Alters the Photosynthetic Responses of a Coccolithophorid to Fluctuating Ultraviolet and Visible Radiation. Plant Physiology, 162(4), 2084-2094, https://doi.org/10.1104/pp.113.219543
    Publication Date: 2024-03-15
    Description: Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Description; Effective absorbance cross-section of photosystem II; Electron transport, absolute, cumulative; Electron transport rate, absolute; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Haptophyta; Identification; Irradiance; Laboratory experiment; Laboratory strains; Light; Light absorption by phytoplankton per chlorophyll a; Non photochemical quenching; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Phytoplankton; Potentiometric; Primary production; Primary production, cumulative; Primary production/Photosynthesis; Primary production of carbon; Replicates; Salinity; Single species; Species; Temperature, water; Time in minutes; Treatment; Ultraviolet radiation-induced inhibition of photosynthesis; Wavelength
    Type: Dataset
    Format: text/tab-separated-values, 138064 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The distribution and abundance of phytoplankton within a sampling grid of 50×103 km2 around Elephant Island were determined from early January to mid-March of 4 successive years, 1990–1993. The number of stations where physical-optical-biological data were obtained from the surface to a maximum of 750 m ranged from 74 in 1990 to 206 in 1993. Contour maps of chlorophyll-a (chl-a) concentrations showed marked mesoscale patchiness that varied from month to month and also interannually. The distribution patterns for chl-a were similar when plotting surface concentrations or integrated values to 100 m. Three major zones could be distinguished that differed in both physical and biological characteristics. Stations in the northwest portion of the grid (Drake Passage waters) and in the southeast portion of the grid (Bransfield Strait waters) showed the most pronounced interannual variations, with phytoplankton biomass and rates of primary production being considerably higher in 1990–91 than in 1992–93. The central portion of the sampling grid, which included the major frontal system north of Elephant Island, showed the smallest interannual variations in both biological and physical parameters and the highest rates of primary production. Phytoplankton biomass and rates of primary production were correlated with depth of the upper mixed layer (UML), which in turn was correlated with the measured wind stress. The mean depth of the UML was 50 m, while the mean depth of the euphotic zone was 90 m. Using the measured mean surface solar irradiance (550 μEinsteins m−2 s−1), the mean irradiance experienced by cells in the UML of 50 m would be around 105 μE m−2 s−1, which is similar to the measured Ik (light saturation) value for photosynthesis (101 μEm−2 s−1). The mean value from all cruises for chl-a in surface waters was 0.7 mg m−3, while the mean rate of primary production was 374 mg Cm−2 day−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...